Computational Analysis of Sound Scenes and Events [electronic resource] / - 1st ed. 2018. - X, 422 p. 81 illus., 54 illus. in color. | Binding - Card Paper |

This book presents computational methods for extracting the useful information from audio signals, collecting the state of the art in the field of sound event and scene analysis. The authors cover the entire procedure for developing such methods, ranging from data acquisition and labeling, through the design of taxonomies used in the systems, to signal processing methods for feature extraction and machine learning methods for sound recognition. The book also covers advanced techniques for dealing with environmental variation and multiple overlapping sound sources, and taking advantage of multiple microphones or other modalities. The book gives examples of usage scenarios in large media databases, acoustic monitoring, bioacoustics, and context-aware devices. Graphical illustrations of sound signals and their spectrographic representations are presented, as well as block diagrams and pseudocode of algorithms. Gives an overview of methods for computational analysis of sounds scenes and events, allowing those new to the field to become fully informed; Covers all the aspects of the machine learning approach to computational analysis of sound scenes and events, ranging from data capture and labeling process to development of algorithms; Includes descriptions of algorithms accompanied by a website from which software implementations can be downloaded, facilitating practical interaction with the techniques.

9783319634500


EXTC Engineering

Signal, Image and Speech Processing. Engineering Acoustics. Computer Appl. in Social and Behavioral Sciences. User Interfaces and Human Computer Interaction.

621.382
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha