Study on Energy Absorption Capacity of Steel–Polyester Hybrid Fiber Reinforced Concrete Under Uni-axial Compression (Record no. 14599)

000 -LEADER
fixed length control field a
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20210305114900.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210305b xxu||||| |||| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency AIKTC-KRRC
Transcribing agency AIKTC-KRRC
100 ## - MAIN ENTRY--PERSONAL NAME
9 (RLIN) 13604
Author Gifta, Chella C.
245 ## - TITLE STATEMENT
Title Study on Energy Absorption Capacity of Steel–Polyester Hybrid Fiber Reinforced Concrete Under Uni-axial Compression
250 ## - EDITION STATEMENT
Volume, Issue number Vol,99(3), September
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Kolkata
Name of publisher, distributor, etc. Springer
Year 2018
300 ## - PHYSICAL DESCRIPTION
Pagination 547-553p.
520 ## - SUMMARY, ETC.
Summary, etc. work presents the energy absorption capacity of hybrid fiber reinforced concrete made with hooked end steel fibers (0.5 and 0.75%) and straight polyester fibers (0.5, 0.8, 1.0 and 2.0%). Compressive toughness (energy absorption capacity) under uni-axial compression was evaluated on 100 × 200 mm size cylindrical specimens with varying steel and polyester fiber content. Efficiency of the hybrid fiber reinforcement is studied with respect to fiber type, size and volume fractions in this investigation. The vertical displacement under uni-axial compression was measured under the applied loads and the load–deformation curves were plotted. From these curves the toughness values were calculated and the results were compared with steel and polyester as individual fibers. The hybridization of 0.5% steel + 0.5% polyester performed well in post peak region due to the addition of polyester fibers with steel fibers and the energy absorption value was 23% greater than 0.5% steel FRC. Peak stress values were also higher in hybrid series than single fiber and based on the results it is concluded that hybrid fiber reinforcement improves the toughness characteristics of concrete without affecting workability.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
9 (RLIN) 4621
Topical term or geographic name entry element Civil Engineering
700 ## - ADDED ENTRY--PERSONAL NAME
9 (RLIN) 13605
Co-Author Prabavathy, S.
773 0# - HOST ITEM ENTRY
Place, publisher, and date of publication Switzerland Springer
Title Journal of the institution of engineers (India): Series A
International Standard Serial Number 2250-2149
856 ## - ELECTRONIC LOCATION AND ACCESS
URL https://link.springer.com/article/10.1007/s40030-018-0310-y
Link text Click Here
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type Articles Abstract Database
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Shelving location Date acquired Barcode Date last seen Price effective from Koha item type
          School of Engineering & Technology School of Engineering & Technology Archieval Section 2021-03-05 2021-2021681 2021-03-05 2021-03-05 Articles Abstract Database
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha