Sulphide Removal from Water Through Electrocoagulation: Kinetics, Equilibrium and Thermodynamic Analysis (Record no. 15150)

000 -LEADER
fixed length control field a
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20210908124619.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210908b xxu||||| |||| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency AIKTC-KRRC
Transcribing agency AIKTC-KRRC
100 ## - MAIN ENTRY--PERSONAL NAME
9 (RLIN) 7639
Author Ravi Shankar
245 ## - TITLE STATEMENT
Title Sulphide Removal from Water Through Electrocoagulation: Kinetics, Equilibrium and Thermodynamic Analysis
250 ## - EDITION STATEMENT
Volume, Issue number Vol.102(2), June
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. New York
Name of publisher, distributor, etc. Springer
Year 2021
300 ## - PHYSICAL DESCRIPTION
Pagination 603-622p.
520 ## - SUMMARY, ETC.
Summary, etc. The current study covers the effect of operating parameters on electrocoagulation (EC) process with Al and Fe electrodes in terms of sulphide reduction. Maximum sulphide reductions of 82% and 87% were noted for Al and Fe electrodes, at optimum operating conditions for initial concentration of 600 mg/L. The sulphide removal mechanism of both electrodes was validated using Langmuir, Freundlich, Hill, Temkin, Elovich and Jossens isotherm models. The Langmuir adsorption isotherm suggests the best fitting with coefficient of regression (R2) of 0.996 and 0.997 for both electrodes, respectively, suggesting monolayer coverage of adsorbed molecules. The kinetic study suggests that the adsorption mechanism during EC process follows second-order kinetics for both electrodes. The thermodynamic study showed that the adsorption of sulphide onto hydroxide formed during EC process was feasible, spontaneous and endothermic in the temperature range of 15–40 °C. The heat of enthalpy during EC process was 41.319 and 50.878 kJ/mol for both electrodes and standard Gibb’s free energy was 4.203 and 3.946 kJ/mol for both electrodes at 25 °C temperature. The activation energy for Al and Fe electrodes was 22.315 and 44.846 kJ/mol, indicating domination of activated chemisorption phenomena during EC process.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
9 (RLIN) 4621
Topical term or geographic name entry element Civil Engineering
700 ## - ADDED ENTRY--PERSONAL NAME
9 (RLIN) 14201
Co-Author Sharan, Shambhoo
773 0# - HOST ITEM ENTRY
Place, publisher, and date of publication Switzerland Springer
International Standard Serial Number 2250-2149
Title Journal of the institution of engineers (India): Series A
856 ## - ELECTRONIC LOCATION AND ACCESS
URL https://link.springer.com/article/10.1007/s40030-021-00536-x
Link text Click here
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type Articles Abstract Database
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Shelving location Date acquired Barcode Date last seen Price effective from Koha item type
          School of Engineering & Technology (PG) School of Engineering & Technology (PG) Archieval Section 2021-09-08 2021-2022059 2021-09-08 2021-09-08 Articles Abstract Database
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha