Engineering Intervention to Prevent Paddy Straw Burning Through In Situ Microbial Degradation (Record no. 15172)

000 -LEADER
fixed length control field a
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20210915111801.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210915b xxu||||| |||| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency AIKTC-KRRC
Transcribing agency AIKTC-KRRC
100 ## - MAIN ENTRY--PERSONAL NAME
9 (RLIN) 14222
Author Mohd. Muzamil
245 ## - TITLE STATEMENT
Title Engineering Intervention to Prevent Paddy Straw Burning Through In Situ Microbial Degradation
250 ## - EDITION STATEMENT
Volume, Issue number Vol.102(1), March
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. New York
Name of publisher, distributor, etc. Springer
Year 2021
300 ## - PHYSICAL DESCRIPTION
Pagination 11-18p.
520 ## - SUMMARY, ETC.
Summary, etc. The study intended to design, develop and evaluate mechanical interface on the basis of physical, engineering and mechanical properties of paddy straw for size reduction. The mechanical interface comprised of loose straw collector, stalk chopper, conveyor, applicator and discharging unit. A 300 L plastic cistern containing fungal inoculum dose prepared from Aspergillus nidulans, Aspergillus awamori, Phanerochaete chryosporium and Trichoderma viride was installed to apply the fungal inoculum uniformly @1000 g per 1000 kg of the chopped straw. The chopped straw was subjected to degradation in rectangular strips with and without inoculant overhead and rotavator incorporated with soil. The treated straw assimilated with the soil bolstered the nitrogen content to 182.0 kg ha−1, phosphorus 63.5 kg ha−1, potassium 1862.5 kg ha−1 and organic carbon 0.51% from initial value of 110.6 kg ha−1, 42.8 kg ha−1, 1068.4 kg ha−1 and 0.33%, respectively. In S3, the soil–straw–microbe interaction provided feasible conditions for the microbial growth, depicted from 53.5% upsurge in dehydrogenase activity to 111.04 µg TPF g−1 per 24 h. The surge in microbial growth coincided with the 16.8% increase in biomass consumption and releasing of CO2 from 272.8 to 319.1 milligram within first phase of degradation. The rapid growth of the microbes at the initial stage decreased the moisture and resources essential for sustaining the growth. In the final stage, the dehydrogenase activity and biomass content decreased 6% to 105.04 µg TPF g−1 per 24 h and 23.7%, decreasing the emission of carbon dioxide to 307.1 mg within 45 days degradation period. The variation in the emission at the last stage can serve as ammunition to fight carbon dioxide induced global climate change.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
9 (RLIN) 4621
Topical term or geographic name entry element Civil Engineering
700 ## - ADDED ENTRY--PERSONAL NAME
9 (RLIN) 14223
Co-Author Mani, Indira
773 0# - HOST ITEM ENTRY
Title Journal of the institution of engineers (India): Series A
Place, publisher, and date of publication Switzerland Springer
International Standard Serial Number 2250-2149
856 ## - ELECTRONIC LOCATION AND ACCESS
URL https://link.springer.com/article/10.1007/s40030-020-00490-0
Link text Click here
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type Articles Abstract Database
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Shelving location Date acquired Barcode Date last seen Price effective from Koha item type
          School of Engineering & Technology (PG) School of Engineering & Technology (PG) Archieval Section 2021-09-15 2021-2022062 2021-09-15 2021-09-15 Articles Abstract Database
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha