Leaf disease detection in banana plant using gabor extraction and region-based convolution neural network (RCNN) (Record no. 17673)

000 -LEADER
fixed length control field nam a22 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220927143629.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 220927b xxu||||| |||| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency AIKTC-KRRC
Transcribing agency AIKTC-KRRC
100 ## - MAIN ENTRY--PERSONAL NAME
9 (RLIN) 18139
Author Seetharaman, K.
245 ## - TITLE STATEMENT
Title Leaf disease detection in banana plant using gabor extraction and region-based convolution neural network (RCNN)
250 ## - EDITION STATEMENT
Volume, Issue number Vol.103(2), June
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. New York
Name of publisher, distributor, etc. Springer
Year 2022
300 ## - PHYSICAL DESCRIPTION
Pagination 501-508p.
520 ## - SUMMARY, ETC.
Summary, etc. Disease identification in bananas has proven to be more difficult in the field due to the fact that it is susceptible to a variety of diseases and causes significant losses to farmers. As a result, this research provides improved image processing algorithms for earlier disease identification in banana leaves. The images are preprocessed using a histogram pixel localization technique with a median filter and the segmentation is done through a region-based edge normalization. Here a novel integrated system is formulated for feature extraction using Gabor-based binary patterns with convolution recurrent neural network. Finally, a region-based convolution neural network is used to identify the disease area by extracting and classifying features in order to increase disease diagnostic accuracy. The proposed Convolutional Recurrent Neural Network–Region-Based Convolutional Neural Network (CRNN–RCNN) classifier provides a precision score of 97.7%, a recall score of 97.7%, and a sensitivity score of 98.69% when evaluated in a dataset with complex image backgrounds. For the banana dataset, the proposed CRNN–RCNN model achieves an accuracy of 98%, which is greater than the accuracy obtained by CNN (87.6%), DCNN (88.9%), KNN (79.56%), and SVM (92.63%).
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
9 (RLIN) 4642
Topical term or geographic name entry element Humanities and Applied Sciences
700 ## - ADDED ENTRY--PERSONAL NAME
9 (RLIN) 18140
Co-Author Mahendran, T.
773 0# - HOST ITEM ENTRY
Title Journal of the institution of engineers (India): Series A
International Standard Serial Number 2250-2149
Place, publisher, and date of publication Switzerland Springer
856 ## - ELECTRONIC LOCATION AND ACCESS
URL https://link.springer.com/article/10.1007/s40030-022-00628-2
Link text Click here
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type Articles Abstract Database
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Shelving location Date acquired Barcode Date last seen Price effective from Koha item type
          School of Engineering & Technology School of Engineering & Technology Archieval Section 2022-09-27 2022-1749 2022-09-27 2022-09-27 Articles Abstract Database
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha