Liquefaction mitigation potential of improved ground using pervious concrete columns (Record no. 18246)

000 -LEADER
fixed length control field a
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20221117103643.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 221117b xxu||||| |||| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency AIKTC-KRRC
Transcribing agency AIKTC-KRRC
100 ## - MAIN ENTRY--PERSONAL NAME
9 (RLIN) 15422
Author Rashma, R. S. V.
245 ## - TITLE STATEMENT
Title Liquefaction mitigation potential of improved ground using pervious concrete columns
250 ## - EDITION STATEMENT
Volume, Issue number Vol.52(1), Feb
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. USA
Name of publisher, distributor, etc. Springer
Year 2022
300 ## - PHYSICAL DESCRIPTION
Pagination 205-226p.
520 ## - SUMMARY, ETC.
Summary, etc. In this study, liquefaction mitigation potential of improved ground using pervious concrete column is being investigated. The seismic performance of pervious concrete column improved ground is compared with conventional stone column improved ground. Three-dimensional finite element analysis using OpenSeesPL software is conducted to study the ground lateral deformation and excess pore water pressure generation of pervious concrete column improved ground on a mildly sloping soil strata of infinite extent under seismic loading. The soil strata considered is fully saturated sand with an inclination of 4°. The parameters influencing seismic performance of improved ground like area ratio, founding depth of columns, diameter of columns and hydraulic conductivity of columns are considered. It is found from various response parameters that the pervious concrete column improved ground has better seismic performance than conventional stone column improved ground. The lateral deformation profile of pervious concrete column is found to be similar to that of concrete pile, allowing excess pore water pressure to dissipate through the pores of pervious concrete column. It is also concluded that pervious concrete columns could be used as an alternative to conventional stone columns to mitigate liquefaction to a larger extent.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
9 (RLIN) 4621
Topical term or geographic name entry element Civil Engineering
700 ## - ADDED ENTRY--PERSONAL NAME
9 (RLIN) 17816
Co-Author Jayalekshmi, B. R.
773 0# - HOST ITEM ENTRY
Title Indian geotechnical journal
Place, publisher, and date of publication Switzerland Springer
International Standard Serial Number 0971-9555
856 ## - ELECTRONIC LOCATION AND ACCESS
URL https://link.springer.com/article/10.1007/s40098-021-00536-5
Link text Click here
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type Articles Abstract Database
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Shelving location Date acquired Barcode Date last seen Price effective from Koha item type
          School of Engineering & Technology (PG) School of Engineering & Technology (PG) Archieval Section 2022-11-17 2022-2134 2022-11-17 2022-11-17 Articles Abstract Database
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha