Artificial neural network based prediction for frp-confined concrete under cyclic loading (Record no. 18886)

000 -LEADER
fixed length control field a
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230217114906.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 230217b xxu||||| |||| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency AIKTC-KRRC
Transcribing agency AIKTC-KRRC
100 ## - MAIN ENTRY--PERSONAL NAME
9 (RLIN) 14291
Author Gopinath, Smitha
245 ## - TITLE STATEMENT
Title Artificial neural network based prediction for frp-confined concrete under cyclic loading
250 ## - EDITION STATEMENT
Volume, Issue number Vol.103(4), Dec
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. USA
Name of publisher, distributor, etc. Springer
Year 2022
300 ## - PHYSICAL DESCRIPTION
Pagination 1015-1028p.
520 ## - SUMMARY, ETC.
Summary, etc. Artificial neural network (ANN)-based model is developed for predicting the stress and strain enhancement of FRP wrapped concrete. An experimental database is considered in the investigations, which includes confinement using carbon, glass and aramid FRP on concrete. The aspect ratio, form of FRP wrap, number of confining layers, unconfined power, confining pressure and FRP characteristics are used as input parameters. Performance of proposed ANN models was evaluated by considering two indices, coefficient of determination and measure of root mean square error. The hoop strain, which is a main influencing parameter in confining pressure and dilation of FRP-confined concrete, is also predicted using ANN, for which no model predictions are available as of today. The predictive accuracy of some of the currently available models from the literature has been assessed by estimating the stress and strain enhancement due to FRP confinement by evaluating the root mean square error. The findings from the investigations show that ANN-based models can accurately predict the response close to experimental response and competitive enough compared to already existing mathematical models. The results pave way toward opening up the scope of data-driven models for the design of FRP confinement for structures.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
9 (RLIN) 4642
Topical term or geographic name entry element Humanities and Applied Sciences
700 ## - ADDED ENTRY--PERSONAL NAME
9 (RLIN) 20035
Co-Author Ramesh Gopal
773 0# - HOST ITEM ENTRY
Place, publisher, and date of publication Switzerland Springer
International Standard Serial Number 2250-2149
Title Journal of the institution of engineers (India): Series A
856 ## - ELECTRONIC LOCATION AND ACCESS
URL https://link.springer.com/article/10.1007/s40030-022-00678-6
Link text Click here
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type Articles Abstract Database
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Shelving location Date acquired Barcode Date last seen Price effective from Koha item type
          School of Engineering & Technology School of Engineering & Technology Archieval Section 2023-02-17 2023-0341 2023-02-17 2023-02-17 Articles Abstract Database
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha