Multi-response optimization of mechanical properties of geopolymer concrete developed using fly ash and Alccofine 1203 (Record no. 19607)

000 -LEADER
fixed length control field a
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230707113625.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 230707b xxu||||| |||| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency AIKTC-KRRC
Transcribing agency AIKTC-KRRC
100 ## - MAIN ENTRY--PERSONAL NAME
9 (RLIN) 21331
Author Ramya, Madhuri B.
245 ## - TITLE STATEMENT
Title Multi-response optimization of mechanical properties of geopolymer concrete developed using fly ash and Alccofine 1203
250 ## - EDITION STATEMENT
Volume, Issue number Vol.97(3), Mar
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Mumbai
Name of publisher, distributor, etc. ACC LTD
Year 2023
300 ## - PHYSICAL DESCRIPTION
Pagination 35-45p.
520 ## - SUMMARY, ETC.
Summary, etc. This paper presents the multi-response optimization of various parameters influencing the mechanical properties of geopolymer concrete. Geopolymer concrete is a sustainable concrete which is prepared by completely replacing ordinary Portland cement (OPC) with fly ash and Alccofine 1203. The main aim of the work is to produce a M30 grade sustainable geoploymer concrete. The binder consists of only fly ash and Alccofine but no OPC, this makes it a sustainable concrete. The number of trials to be conducted are 54 (6 × 3 × 3) as there are six different values for percentage of Alccofine (A), three different values for molarity of NaOH (M) and ratio of Na2SiO3 to NaOH (R) each. But using optimization has reduced the number of trials to 18, nearly 66.67 %, which is remarkable. This saves time, money, resources and man power. And moreover, the percentage error between the predicted values and the experimental results is less than 2 % in majority of the results. The parameters such as proportions of Alccofine and fly ash, molarity of NaOH and the ratio of Na2SiO3 to NaOH are set at their optimum levels to develop a basic M30 grade geopolymer concrete. Initially, the design of experiments (DOEs) is done in Taguchi method using the standard L18 orthogonal array consisting of three factors with different number of levels. After studying the influence of all the variables on individual responses (mechanical properties), the multi-response optimization is performed by using the desirability method, to find out the proportions of all the variables to get the desired responses. The responses considered are compressive strength, split tensile strength, flexural strength, modulus of elasticity (both static and dynamic) and ultrasonic pulse velocity (UPV). The final factors arrived after optimization is 11.6 % of Alccofine in total binder, 12 M NaOH and Na2SiO3 to NaOH ratio of 1.5.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
9 (RLIN) 4621
Topical term or geographic name entry element Civil Engineering
700 ## - ADDED ENTRY--PERSONAL NAME
9 (RLIN) 21332
Co-Author Srinivasa Rao, K.
773 0# - HOST ITEM ENTRY
International Standard Serial Number 0019-4565
Title Indian Concrete Journal - ICJ
Place, publisher, and date of publication Thane ACC Limited
856 ## - ELECTRONIC LOCATION AND ACCESS
URL https://www.icjonline.com/editionabstract_detail/032023
Link text Click here
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type Articles Abstract Database
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Shelving location Date acquired Barcode Date last seen Price effective from Koha item type
          School of Engineering & Technology (PG) School of Engineering & Technology (PG) Archieval Section 2023-07-07 2023-0980 2023-07-07 2023-07-07 Articles Abstract Database
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha