Horizontal mode natural frequency of a floating pile in layered soil: full-scale field test vs mathematical models (Record no. 20590)

000 -LEADER
fixed length control field a
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240116144703.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240116b xxu||||| |||| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency AIKTC-KRRC
Transcribing agency AIKTC-KRRC
100 ## - MAIN ENTRY--PERSONAL NAME
9 (RLIN) 22769
Author Varghese, Ramon
245 ## - TITLE STATEMENT
Title Horizontal mode natural frequency of a floating pile in layered soil: full-scale field test vs mathematical models
250 ## - EDITION STATEMENT
Volume, Issue number Vol.53(4), Aug
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. USA
Name of publisher, distributor, etc. Springer
Year 2023
300 ## - PHYSICAL DESCRIPTION
Pagination 717-731p.
520 ## - SUMMARY, ETC.
Summary, etc. Pile supported structures can be subjected to a variety of man-made and naturally occurring dynamic loads. Dynamic loads such as those from rotating machinery include a considerable lateral component. The natural frequency of a pile in the horizontal mode becomes a key parameter in the design of dynamically sensitive equipment foundations. It is not uncommon for structural engineers to estimate the natural frequency of piles using quick linear methods using available soil investigation data before advanced laboratory tests on soil samples can be performed to calibrate nonlinear numerical models. This paper presents results from free and forced vibration tests on a full-scale single pile, designed for a high-speed compressor unit, in Hazira, India. Two different fast mathematical models, one following the Beam on Dynamic Winkler Foundation (BDWF) method, and another involving an FEM–BEM based numerical method were used in predictions against experimental results. The BDWF method was found to produce a preliminary estimate of pile stiffness at low strain levels. However, the selection of soil stiffness and damping models are crucial for the accuracy of BDWF models. It was found that the FEM–BEM model was able to simulate the nonlinear pile response with a moderate overestimation of vibration amplitudes.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
9 (RLIN) 4690
Topical term or geographic name entry element Construction Engineering and Management (CEM)
700 ## - ADDED ENTRY--PERSONAL NAME
9 (RLIN) 22770
Co-Author Varun Nigesh, S. R.
773 0# - HOST ITEM ENTRY
International Standard Serial Number 0971-9555
Place, publisher, and date of publication Switzerland Springer
Title Indian geotechnical journal
856 ## - ELECTRONIC LOCATION AND ACCESS
URL https://link.springer.com/article/10.1007/s40098-023-00713-8
Link text Click here
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type Articles Abstract Database
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Shelving location Date acquired Barcode Date last seen Price effective from Koha item type
          School of Engineering & Technology (PG) School of Engineering & Technology (PG) Archieval Section 2024-01-16 2024-0059 2024-01-16 2024-01-16 Articles Abstract Database
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha