Seismic response analysis of high-rise reinforced concrete buildings using outrigger system (Record no. 20712)

000 -LEADER
fixed length control field a
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240312133642.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240312b xxu||||| |||| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency AIKTC-KRRC
Transcribing agency AIKTC-KRRC
100 ## - MAIN ENTRY--PERSONAL NAME
9 (RLIN) 22966
Author Sthapit, Nima
245 ## - TITLE STATEMENT
Title Seismic response analysis of high-rise reinforced concrete buildings using outrigger system
250 ## - EDITION STATEMENT
Volume, Issue number Vol.104(4), Dec
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. USA
Name of publisher, distributor, etc. Springer
Year 2023
300 ## - PHYSICAL DESCRIPTION
Pagination 943-952p.
520 ## - SUMMARY, ETC.
Summary, etc. For the past few years, the trend of construction of high-rise buildings has progressed due to rapid urbanization and lack of land for horizontal expansion, especially in metropolis. These buildings are uniquely characterized by the requirement of major design consideration under lateral loads, earthquakes, or wind. So, it becomes more difficult to control the drift and deflection with the increasing height of the structure. To this end, this study presents a few energy-dissipating techniques that can be used in buildings to increase their stiffness and stability under seismic forces, along with a comparative analysis of the appropriate system to dissipate the maximum energy induced by these forces. A total of one hundred twenty-three analytical models were created on finite element modeling software using two sets of models. The linear dynamic analysis was carried out in the reference building and building with three different outrigger systems. The best outrigger system was selected, and its optimum location was determined by comparing their results in terms of story drift and top story deflection. The seismic response analysis of the first set of models illustrates that the M3 system with belt truss and cap truss is the best outrigger system, and its position is nearly at the mid-height of the building. Furthermore, the research was extended to the second set of models with ten more different systems with varying numbers of stories to investigate the effect of the slenderness ratio to locate the optimum position of the outrigger. The study highlights that it is more effective to place the outrigger at the upper heights of the building with a lower slenderness ratio to control the lateral displacement.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
9 (RLIN) 4642
Topical term or geographic name entry element Humanities and Applied Sciences
700 ## - ADDED ENTRY--PERSONAL NAME
9 (RLIN) 22967
Co-Author Shrestha, Rajesh Kumar
773 0# - HOST ITEM ENTRY
International Standard Serial Number 2250-2149
Place, publisher, and date of publication Switzerland Springer
Title Journal of the institution of engineers (India): Series A
856 ## - ELECTRONIC LOCATION AND ACCESS
URL https://link.springer.com/article/10.1007/s40030-023-00758-1
Link text Click here
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type Articles Abstract Database
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Shelving location Date acquired Barcode Date last seen Price effective from Koha item type
          School of Engineering & Technology School of Engineering & Technology Archieval Section 2024-03-12 2024-0233 2024-03-12 2024-03-12 Articles Abstract Database
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha