Numerical analysis of unloading-induced rock failure: Insight into strainburst mechanism (Record no. 8604)

000 -LEADER
fixed length control field a
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20190416095908.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 190322b xxu||||| |||| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency AIKTC-KRRC
Transcribing agency AIKTC-KRRC
100 ## - MAIN ENTRY--PERSONAL NAME
9 (RLIN) 8185
Author Huang, Zhiping
245 ## - TITLE STATEMENT
Title Numerical analysis of unloading-induced rock failure: Insight into strainburst mechanism
250 ## - EDITION STATEMENT
Remainder of edition statement Vol. 48(3), September
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. New York
Name of publisher, distributor, etc. Springer
Year 2018
300 ## - PHYSICAL DESCRIPTION
Pagination 558-563p.
520 ## - SUMMARY, ETC.
Summary, etc. In this technical note, the rock failure process analysis software RFPA2D was used to reproduce unloading-induced brittle failure. Especially, the approach aims to investigate the mechanism and the failure mode of unloading-induced rock failure. Two tunnel excavation models were built to conduct the numerical simulation. Failure characteristic of a single-stage excavation under unloading exhibits a very brittle failure behavior and a sudden and intense energy release. The predominant failure mode is spalling, further developing some local shear failures, with fractures approximately parallel to the excavation boundary. The failure mode of multiple-stage excavation is predominantly shear failure with some local tensile failures. The energy release rates in a single-stage excavation and multiple-stage excavation are compared simultaneously after the unloading, the total energy and the releasable strain energy for the case of a single-stage excavation are much higher than that for multiple-stage excavation. This note presents the rock failure intensity and the damage mode significantly, with satisfactory results.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
9 (RLIN) 4621
Topical term or geographic name entry element Civil Engineering
700 ## - ADDED ENTRY--PERSONAL NAME
9 (RLIN) 8186
Co-Author Tang, Chun’an
700 ## - ADDED ENTRY--PERSONAL NAME
9 (RLIN) 8187
Co-Author Cai, Ming
773 0# - HOST ITEM ENTRY
Title Indian geotechnical journal
International Standard Serial Number 0971-9555
Place, publisher, and date of publication Switzerland Springer
856 ## - ELECTRONIC LOCATION AND ACCESS
URL https://link.springer.com/article/10.1007/s40098-017-0260-8
Link text Click here
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type Articles Abstract Database
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Shelving location Date acquired Barcode Date last seen Price effective from Koha item type
          School of Engineering & Technology School of Engineering & Technology Archieval Section 2019-05-30 2018610 2019-06-19 2019-05-30 Articles Abstract Database
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha