Normal view MARC view ISBD view

Quantum computational simulation to calculate the deuteron binding energy

By: Ranchi, Abhisek Roy.
Publisher: New Delhi NISCAIR 2019Edition: Vol.57(8), Aug.Description: 596-598p.Subject(s): Humanities and Applied ScienceOnline resources: Click here In: Theoretical aspect of the deformation effect on fusion cross-sections induced by heavy ion systems 16,18O + 58Ni and 112Sn Deb, Nabendu KumarSummary: This paper in a nutshell, introduces quantum computational techniques used in nuclear physics to provide us with a new path forward in the exploration of many-body systems that are of central importance to nuclear physics, such as the deuteron (the simplest case of a many body system). The purpose of this paper is to bind QC algorithms with calculations based on complex nuclei, which unravel important details about the properties of matter, and formation of heavy elements. This research approaches towards low-energy nuclear many-body problems by simulating the lightest of complex nuclei, the deuteron, and by applying the VQE algorithm (quantum algorithm to find ground state energy) we generate binding energies of the deuteron accurate to a reasonable error. This research direction leads us to a better understanding of how quantum computation and information could be applied to a range of light nuclei, using QC hardware that is expected to be available during the immediate next few years. Another feature of this research is that it also explores the presently available quantum computers at IBM called the IBM Q-Experience (Q-X), which can be accessed remotely via the web and can serve to facilitate many quantum computational experiments. This research proves how useful a tool the IBM Q-X is to devise new quantum algorithms and test them for nuclear physics as well as other diverse fields of physics.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2020330
Total holds: 0

This paper in a nutshell, introduces quantum computational techniques used in nuclear physics to provide us with a new path forward in the exploration of many-body systems that are of central importance to nuclear physics, such as the deuteron (the simplest case of a many body system). The purpose of this paper is to bind QC algorithms with calculations based on complex nuclei, which unravel important details about the properties of matter, and formation of heavy elements. This research approaches towards low-energy nuclear many-body problems by simulating the lightest of complex nuclei, the deuteron, and by applying the VQE algorithm (quantum algorithm to find ground state energy) we generate binding energies of the deuteron accurate to a reasonable error. This research direction leads us to a better understanding of how quantum computation and information could be applied to a range of light nuclei, using QC hardware that is expected to be available during the immediate next few years. Another feature of this research is that it also explores the presently available quantum computers at IBM called the IBM Q-Experience (Q-X), which can be accessed remotely via the web and can serve to facilitate many quantum computational experiments. This research proves how useful a tool the IBM Q-X is to devise new quantum algorithms and test them for nuclear physics as well as other diverse fields of physics.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha