Normal view MARC view ISBD view

Effects of radiation and chemical reaction on convective nanofluid flow through a non-linear permeable stretching sheet with partial slip

By: Sreedevi, G.
Publisher: New Delhi CSIR 2019Edition: Vol.57(5), May.Description: 293-301p.Subject(s): Humanities and Applied ScienceOnline resources: Click here In: Indian journal of pure & applied physics (IJPAP)Summary: The steady, convective two-dimensional nanofluid flow has been investigated under the influence of radiation absorption and chemical reaction through a porous medium. The flow has been caused by a non-linear stretching sheet with the slip effects of the velocity, the temperature and the nanoparticle concentration. The fluid is electrically conducted in the presence of an applied magnetic field. Appropriate transformations reduce the non-linear partial differential system to an ordinary differential system. The convergent solutions of the governing non-linear problems have been computed using fifth-order-Runge-Kutta-Fehlberg integration scheme. The results of the velocity, the temperature, and the concentration fields have been calculated in series forms. The effects of the different parameters on the velocity, the temperature, and the concentration profiles are shown and analyzed. The skin friction coefficient, the Nusselt and the Sherwood numbers have also been computed and investigated for different embedded parameters in the problem statement.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2020720
Total holds: 0

The steady, convective two-dimensional nanofluid flow has been investigated under the influence of radiation absorption and chemical reaction through a porous medium. The flow has been caused by a non-linear stretching sheet with the slip effects of the velocity, the temperature and the nanoparticle concentration. The fluid is electrically conducted in the presence of an applied magnetic field. Appropriate transformations reduce the non-linear partial differential system to an ordinary differential system. The convergent solutions of the governing non-linear problems have been computed using fifth-order-Runge-Kutta-Fehlberg integration scheme. The results of the velocity, the temperature, and the concentration fields have been calculated in series forms. The effects of the different parameters on the velocity, the temperature, and the concentration profiles are shown and analyzed. The skin friction coefficient, the Nusselt and the Sherwood numbers have also been computed and investigated for different embedded parameters in the problem statement.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha