Normal view MARC view ISBD view

Computational modeling of partial slip effects on hydromagnetic boundary layer flow past an exponential stretching surface in presence of thermal radiation

By: Chaudhary, Santosh.
Contributor(s): Chaudhary, Susheela.
Publisher: New Delhi CSIR 2019Edition: Vol.57(6), June.Description: 377--384p.Subject(s): Humanities and Applied ScienceOnline resources: Click here In: Indian journal of pure & applied physics (IJPAP)Summary: Numerical analysis of computational modeling is performed to investigate the influence of partial slip on boundary layer flow of electrically conducting incompressible viscous fluid over exponential stretching surface in the presence of thermal radiation. The impact of defining parameters are determined and governing boundary layer equations are reduced to ordinary differential equations by using appropriate similarity transformation. Numerical computation of the problem has been carried out by Runge-Kutta fourth order method in association with quasilinear shooting technique. Effects ofmagnetic parameter, radiation parameter, Prandtl number, suction or injection parameter, velocity slip parameter and thermal slip parameter on velocity and temperature profiles are computed and illustrated graphically, whereas numerical values of local skin friction coefficient and local Nusselt number are expressed through tabular arrays. Results for non-magnetic flow condition are found in concordance with earlier investigations.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2020742
Total holds: 0

Numerical analysis of computational modeling is performed to investigate the influence of partial slip on boundary layer flow of electrically conducting incompressible viscous fluid over exponential stretching surface in the presence of thermal radiation. The impact of defining parameters are determined and governing boundary layer equations are reduced to ordinary differential equations by using appropriate similarity transformation. Numerical computation of the problem has been carried out by Runge-Kutta fourth order method in association with quasilinear shooting technique. Effects ofmagnetic parameter, radiation parameter, Prandtl number, suction or injection parameter, velocity slip parameter and thermal slip parameter on velocity and temperature profiles are computed and illustrated graphically, whereas numerical values of local skin friction coefficient and local Nusselt number are expressed through tabular arrays. Results for non-magnetic flow condition are found in concordance with earlier investigations.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha