Normal view MARC view ISBD view

Collective Dynamics of Particles [electronic resource] : From Viscous to Turbulent Flows /

Contributor(s): Marchioli, Cristian [editor.] | SpringerLink (Online service).
Series: CISM International Centre for Mechanical Sciences, Courses and Lectures: 576Publisher: Cham : Springer International Publishing : Imprint: Springer, 2017Edition: 1st ed. 2017.Description: VII, 128 p. 67 illus. | Binding - Card Paper |.Content type: text Media type: computer Carrier type: online resourceISBN: 9783319512266.Subject(s): Mechanical Engineering | Engineering Fluid Dynamics | Mathematical Modeling and Industrial Mathematics | Engineering Thermodynamics, Heat and Mass Transfer | Fluid- and AerodynamicsDDC classification: 620.1064 Online resources: Click here to access eBook in Springer Nature platform. (Within Campus only.) In: Springer Nature eBookSummary: The book surveys the state-of-the-art methods that are currently available to model and simulate the presence of rigid particles in a fluid flow. For particles that are very small relative to the characteristic flow scales and move without interaction with other particles, effective equations of motion for particle tracking are formulated and applied (e.g. in gas-solid flows). For larger particles, for particles in liquid-solid flows and for particles that interact with each other or possibly modify the overall flow detailed model are presented. Special attention is given to the description of the approximate force coupling method (FCM) as a more general treatment for small particles, and derivations in the context of low Reynolds numbers for the particle motion as well as application at finite Reynolds numbers are provided. Other topics discussed in the book are the relation to higher resolution immersed boundary methods, possible extensions to non-spherical particles and examples of applications of such methods to dispersed multiphase flows.
List(s) this item appears in: Springer Nature eBooks
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
No physical items for this record

The book surveys the state-of-the-art methods that are currently available to model and simulate the presence of rigid particles in a fluid flow. For particles that are very small relative to the characteristic flow scales and move without interaction with other particles, effective equations of motion for particle tracking are formulated and applied (e.g. in gas-solid flows). For larger particles, for particles in liquid-solid flows and for particles that interact with each other or possibly modify the overall flow detailed model are presented. Special attention is given to the description of the approximate force coupling method (FCM) as a more general treatment for small particles, and derivations in the context of low Reynolds numbers for the particle motion as well as application at finite Reynolds numbers are provided. Other topics discussed in the book are the relation to higher resolution immersed boundary methods, possible extensions to non-spherical particles and examples of applications of such methods to dispersed multiphase flows.

There are no comments for this item.

Log in to your account to post a comment.
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha