Normal view MARC view ISBD view

Computational Transport Phenomena of Fluid-Particle Systems [electronic resource] /

By: Arastoopour, Hamid [author.].
Contributor(s): Gidaspow, Dimitri [author.] | Abbasi, Emad [author.] | SpringerLink (Online service).
Series: Mechanical Engineering Series: Publisher: Cham : Springer International Publishing : Imprint: Springer, 2017Edition: 1st ed. 2017.Description: XI, 103 p. 28 illus., 15 illus. in color. | Binding - Card Paper |.Content type: text Media type: computer Carrier type: online resourceISBN: 9783319454900.Subject(s): Mechanical Engineering | Engineering Thermodynamics, Heat and Mass Transfer | Mathematical and Computational Engineering | Industrial Chemistry/Chemical EngineeringDDC classification: 621.4021 Online resources: Click here to access eBook in Springer Nature platform. (Within Campus only.) In: Springer Nature eBookSummary: This book concerns the most up-to-date advances in computational transport phenomena (CTP), an emerging tool for the design of gas-solid processes such as fluidized bed systems. The authors examine recent work in kinetic theory and CTP and illustrate gas-solid processes’ many applications in the energy, chemical, pharmaceutical, and food industries. They also discuss the kinetic theory approach in developing constitutive equations for gas-solid flow systems and how it has advanced over the last decade as well as the possibility of obtaining innovative designs for multiphase reactors, such as those needed to capture CO2 from flue gases. Suitable as a concise reference and a textbook supplement for graduate courses, Computational Transport Phenomena of Gas-Solid Systems is ideal for practitioners in industries involved with the design and operation of processes based on fluid/particle mixtures, such as the energy, chemicals, pharmaceuticals, and food processing. Explains how to couple the population balance equation (PBE) with CTP models and use available methods of moments to solve these equations; Addresses modified CTP governing equations and codes that predict the effect of non-homogeneous flow on process design and scale-up; Provides theoretical equations of state and transport properties for each phase of granular flow kinetic theory.
List(s) this item appears in: Springer Nature eBooks
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
No physical items for this record

This book concerns the most up-to-date advances in computational transport phenomena (CTP), an emerging tool for the design of gas-solid processes such as fluidized bed systems. The authors examine recent work in kinetic theory and CTP and illustrate gas-solid processes’ many applications in the energy, chemical, pharmaceutical, and food industries. They also discuss the kinetic theory approach in developing constitutive equations for gas-solid flow systems and how it has advanced over the last decade as well as the possibility of obtaining innovative designs for multiphase reactors, such as those needed to capture CO2 from flue gases. Suitable as a concise reference and a textbook supplement for graduate courses, Computational Transport Phenomena of Gas-Solid Systems is ideal for practitioners in industries involved with the design and operation of processes based on fluid/particle mixtures, such as the energy, chemicals, pharmaceuticals, and food processing. Explains how to couple the population balance equation (PBE) with CTP models and use available methods of moments to solve these equations; Addresses modified CTP governing equations and codes that predict the effect of non-homogeneous flow on process design and scale-up; Provides theoretical equations of state and transport properties for each phase of granular flow kinetic theory.

There are no comments for this item.

Log in to your account to post a comment.
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha