Normal view MARC view ISBD view

Tribological Study of Nanoparticles Enriched Bio-based Lubricants for Piston Ring–Cylinder Interaction [electronic resource] /

By: Gulzar, Mubashir [author.].
Contributor(s): SpringerLink (Online service).
Series: Springer Theses, Recognizing Outstanding Ph.D. Research: Publisher: Singapore : Springer Singapore : Imprint: Springer, 2018Edition: 1st ed. 2018.Description: XXVIII, 147 p. 103 illus., 26 illus. in color. | Binding - Card Paper |.Content type: text Media type: computer Carrier type: online resourceISBN: 9789811082948.Subject(s): Mechanical Engineering | Engine Technology | Tribology, Corrosion and Coatings | Nanoscale Science and TechnologyDDC classification: 629 Online resources: Click here to access eBook in Springer Nature platform. (Within Campus only.) In: Springer Nature eBookSummary: This thesis investigates the tribological viability of bio-based base stock to which different nanoparticles were incorporated for engine piston-ring–cylinder-liner interaction. It determines experimentally the effects of lubricating oil conditions (new and engine-aged) on the friction and wear of the materials used for piston rings and cylinder liners. The specific base stock examined was a trimethylolpropane (TMP) ester derived from palm oil, and the nanoparticles were used as additives to obtain tribologically enhanced bio-based lubricants. The overall analysis of the results demonstrated the potential of nanoparticles to improve the tribological behavior of bio-based base stock for piston-ring–cylinder-liner interaction.
List(s) this item appears in: Springer Nature eBooks
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
No physical items for this record

This thesis investigates the tribological viability of bio-based base stock to which different nanoparticles were incorporated for engine piston-ring–cylinder-liner interaction. It determines experimentally the effects of lubricating oil conditions (new and engine-aged) on the friction and wear of the materials used for piston rings and cylinder liners. The specific base stock examined was a trimethylolpropane (TMP) ester derived from palm oil, and the nanoparticles were used as additives to obtain tribologically enhanced bio-based lubricants. The overall analysis of the results demonstrated the potential of nanoparticles to improve the tribological behavior of bio-based base stock for piston-ring–cylinder-liner interaction.

There are no comments for this item.

Log in to your account to post a comment.
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha