Normal view MARC view ISBD view

Study on Crack Initiation and Propagation in Rock with Pre-existing Flaw Under Uniaxial Compression

By: Sivakumar, G.
Contributor(s): Maji, V. B.
Publisher: New York Springer 2018Edition: Vol,48 (4), Dec.Description: 626-639p.Subject(s): Civil EngineeringOnline resources: Click Here In: Indian geotechnical journalSummary: study for crack initiation and propagation in rock with a pre-existing flaw is carried under uniaxial compression. The aim is to understand the influence of crack initiation stress and peak stress for narrow flaws in rock by conducting laboratory experiments and subsequent numerical simulations. Specimens are prepared using Gypsum material with the incorporation of flaws at varying flaw angles from 15° to 75° having three different strengths. The results of the crack initiation and peak stresses for different flaw angles along with crack growth patterns are observed. Numerical simulations using ABAQUS adopting extended finite element and cohesive zone model is attempted to capture the crack initiation and propagation in rock specimens. For closed crack condition, the numerical model considers frictional behaviour across the flaw surface and model could capture the crack initiation and peak stresses along with propagated crack patterns irrespective of the material strengths. Both laboratory and numerical studies reveal that the crack initiation stress and peak stress gets initiated sooner for the flaw having 45° when compared to all other angles which are in contrast to open flaw conditions. Also at this angle, a stable curvilinear wing cracks are observed irrespective of the material strengths. In laboratory experiments, pre-dominant wing cracks are observed for a material having high strengths that influence the final pattern in specimens while in numerical analysis, all the specimens shows clear visible wing crack propagation and leads to failure of the material.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2021-2021500
Total holds: 0

study for crack initiation and propagation in rock with a pre-existing flaw is carried under uniaxial compression. The aim is to understand the influence of crack initiation stress and peak stress for narrow flaws in rock by conducting laboratory experiments and subsequent numerical simulations. Specimens are prepared using Gypsum material with the incorporation of flaws at varying flaw angles from 15° to 75° having three different strengths. The results of the crack initiation and peak stresses for different flaw angles along with crack growth patterns are observed. Numerical simulations using ABAQUS adopting extended finite element and cohesive zone model is attempted to capture the crack initiation and propagation in rock specimens. For closed crack condition, the numerical model considers frictional behaviour across the flaw surface and model could capture the crack initiation and peak stresses along with propagated crack patterns irrespective of the material strengths. Both laboratory and numerical studies reveal that the crack initiation stress and peak stress gets initiated sooner for the flaw having 45° when compared to all other angles which are in contrast to open flaw conditions. Also at this angle, a stable curvilinear wing cracks are observed irrespective of the material strengths. In laboratory experiments, pre-dominant wing cracks are observed for a material having high strengths that influence the final pattern in specimens while in numerical analysis, all the specimens shows clear visible wing crack propagation and leads to failure of the material.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha