Normal view MARC view ISBD view

Finite element studies on the flexure-shear behavior of steel and hybrid fiber reinforced prestressed concrete beams

By: Lakavath, Chandrashekhar.
Contributor(s): Varma Sagi, Murali Sagar.
Publisher: Thane ACC LTD 2021Edition: Vol.95(1), Jan.Description: 58-70p.Subject(s): Civil EngineeringOnline resources: Click here In: Indian Concrete JournalSummary: The flexure-shear behavior of steel and hybrid fiber reinforced prestressed concrete beams are studied in three-dimensional nonlinear finite element analysis. Test results of a prestressed concrete beam were simulated using finite element software ABAQUS. The volume fraction of the steel fibers (SF) and hybrid (HB) fibers are the main variables considered in this study. The other parameters such as the cross-section area of concrete, longitudinal reinforcement ratio and shear span to depth ratio were kept constant. The concrete behavior was simulated through the concrete damage plasticity (CDP) model. The loading and boundary conditions in the FE models were kept similar to that of experimental testing. The load-deflection response, ductility, and failure modes of the beams were predicted well. During the experimentation, the crack initiation, crack propagation was traced by digital image correlation (DIC) technique. An increase in the volume fraction of fibers increased the flexure capacity and ductility. Around 109% and 89% improvement in ductility is observed at 1.0% volume fraction of steel and hybrid fibers, respectively.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology (PG)
Archieval Section
Not for loan 2021-2021974
Total holds: 0

The flexure-shear behavior of steel and hybrid fiber reinforced prestressed concrete beams are studied in three-dimensional nonlinear finite element analysis. Test results of a prestressed concrete beam were simulated using finite element software ABAQUS. The volume fraction of the steel fibers (SF) and hybrid (HB) fibers are the main variables considered in this study. The other parameters such as the cross-section area of concrete, longitudinal reinforcement ratio and shear span to depth ratio were kept constant. The concrete behavior was simulated through the concrete damage plasticity (CDP) model. The loading and boundary conditions in the FE models were kept similar to that of experimental testing. The load-deflection response, ductility, and failure modes of the beams were predicted well. During the experimentation, the crack initiation, crack propagation was traced by digital image correlation (DIC) technique. An increase in the volume fraction of fibers increased the flexure capacity and ductility. Around 109% and 89% improvement in ductility is observed at 1.0% volume fraction of steel and hybrid fibers, respectively.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha