Normal view MARC view ISBD view

New Layer Coefficients for Geogrid-Reinforced Pavement Bases

By: Saride, Sireesh.
Contributor(s): Baadiga, Ramu.
Publisher: Germany Springer 2021Edition: Vol.51(1), February.Description: 182-196p.Subject(s): Civil EngineeringOnline resources: Click here In: Indian geotechnical journalSummary: Stabilizing the base layers of flexible pavements is gaining tremendous attention due to the lack of suitable construction materials. A geogrid reinforcement could offer a reduction in granular layer thickness or enhance the service life of the pavement. However, there is no standard direct methodology available for the design of a flexible pavement with a geogrid-reinforced base layer. The current design approaches adopt the base layer coefficient ratio (LCR) derived from the layer coefficient equation proposed by the American Association of State Highway and Transportation Officials (AASHTO 1993), which was initially developed for an unreinforced base layer. Moreover, the accuracy of the existing model for determining the base layer coefficient needs a reassessment since it varies for different subgrade conditions. Hence, an attempt was made to propose a new model which emphasizes on unreinforced and geogrid-reinforced base layer coefficients for weak-to-moderate subgrade conditions. Prior to the analysis, large-scale model pavement experiments were conducted to realize modulus improvement factor (MIF) and range of values of LCR of different geogrids, which are crucial parameters used in the design. In addition, design examples, validation and the MIF and LCR values of geogrid-reinforced base layer were provided for obtaining the base layer coefficients. It was noticed that the MIF and LCR value for the geogrid-reinforced base layers range between 1.6–3.33 and 1.23–1.59, respectively. The newly proposed equation for the base layer coefficients accounted for about a 33% reduction in the base layer thickness compared to the unreinforced case. Hence, a safe and economical pavement section may be obtained from the proposed model.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology (PG)
Archieval Section
Not for loan 2021-2022247
Total holds: 0

Stabilizing the base layers of flexible pavements is gaining tremendous attention due to the lack of suitable construction materials. A geogrid reinforcement could offer a reduction in granular layer thickness or enhance the service life of the pavement. However, there is no standard direct methodology available for the design of a flexible pavement with a geogrid-reinforced base layer. The current design approaches adopt the base layer coefficient ratio (LCR) derived from the layer coefficient equation proposed by the American Association of State Highway and Transportation Officials (AASHTO 1993), which was initially developed for an unreinforced base layer. Moreover, the accuracy of the existing model for determining the base layer coefficient needs a reassessment since it varies for different subgrade conditions. Hence, an attempt was made to propose a new model which emphasizes on unreinforced and geogrid-reinforced base layer coefficients for weak-to-moderate subgrade conditions. Prior to the analysis, large-scale model pavement experiments were conducted to realize modulus improvement factor (MIF) and range of values of LCR of different geogrids, which are crucial parameters used in the design. In addition, design examples, validation and the MIF and LCR values of geogrid-reinforced base layer were provided for obtaining the base layer coefficients. It was noticed that the MIF and LCR value for the geogrid-reinforced base layers range between 1.6–3.33 and 1.23–1.59, respectively. The newly proposed equation for the base layer coefficients accounted for about a 33% reduction in the base layer thickness compared to the unreinforced case. Hence, a safe and economical pavement section may be obtained from the proposed model.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha