Normal view MARC view ISBD view

Development of Sustainable Engineered Cementitious Composite (ECC) with Ternary Industrial Solid Wastes and Cost-Effective PVA Fibres

By: Han, Yudong.
Contributor(s): Wang, Qing.
Publisher: Thane ACC LTD 2019Edition: Vol.93(12), Dec.Description: 19-29p.Subject(s): Civil EngineeringOnline resources: Click here In: Indian Concrete Journal - ICJSummary: Engineered Cementitious Composite (ECC) with ductile strain-hardening and fine multiple cracking behaviors has been recognized as a type of advanced and resilient alternative to conventional concrete materials. However, the high cost of the constituents, mainly associated with high cement content and large consumption of expensive polyvinyl alcohol (PVA) fibres, limits the wide application of ECCs. To improve the sustainability and reduce the material cost as well, latest efforts were made by applying green binders with industrial wastes and/or recycled fibres. Herein, this study focuses on the potential use of industrial solid wastes (ISWs) including silica fume (SF), fly ash (FA) and ground granulated blast furnace slag (GGBFS), and lowcost PVA fibres produced by local synthetic fibre factory. Firstly, new matrixes incorporating with ternary industrial solid wastes were designed and optimized through partially substituting cement by successive steps. Then mechanical properties of costeffective PVA-ECC were experimentally evaluated. Results show that even if as much as 50% of Portland Cement is replaced with ISWs, ECC with local PVA fibres still maintains strain-hardening and multiple cracking behaviors accompanied by a tensile strain capacity up to 1.0%. Such improvement may significantly reduce the environmental impact and material cost, and is expected to greatly promote the field applications of ECC with local ingredients.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology (PG)
Archieval Section
Not for loan 2021-2022285
Total holds: 0

Engineered Cementitious Composite (ECC) with ductile strain-hardening and fine multiple cracking behaviors has been recognized as a type of advanced and resilient alternative to conventional concrete materials. However, the high cost of the constituents, mainly associated with high cement content and large consumption of expensive polyvinyl alcohol (PVA) fibres, limits the wide application of ECCs. To improve the sustainability and reduce the material cost as well, latest efforts were made by applying green binders with industrial wastes and/or recycled fibres. Herein, this study focuses on the potential use of industrial solid wastes (ISWs) including silica fume (SF), fly ash (FA) and ground granulated blast furnace slag (GGBFS), and lowcost PVA fibres produced by local synthetic fibre factory. Firstly, new matrixes incorporating with ternary industrial solid wastes were designed and optimized through partially substituting cement by successive steps. Then mechanical properties of costeffective PVA-ECC were experimentally evaluated. Results show that even if as much as 50% of Portland Cement is replaced with ISWs, ECC with local PVA fibres still maintains strain-hardening and multiple cracking behaviors accompanied by a tensile strain capacity up to 1.0%. Such improvement may significantly reduce the environmental impact and material cost, and is expected to greatly promote the field applications of ECC with local ingredients.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha