Normal view MARC view ISBD view

Green approach for the synthesis of silver nanoparticles using Bryophyllum pinnatum

Contributor(s): Sharada, P.
Publisher: Mandsaur B.R. Nahata Smriti Sansthan 2021Edition: Vol.15(3), Jul-Sep.Description: 307-312p.Subject(s): PHARMACEUTICSOnline resources: Full Text In: International journal of green pharmacySummary: Introduction: Nanotechnology has opened up novel dimensions in the field of biotechnology and medicine. Green synthesis of silver nanoparticles (AgNPs) is a clean, cost effective, and non-toxic over synthetic methods. Silver is the metal of choice as they hold the promise to kill microbes effectively. AgNPs have been recently known to be a promising antimicrobial agent that acts on a broad range of target sites both extracellularly and intracellularly. Green synthesis of AgNPs has been estimated to be rich with phytochemicals such as alkaloids, triterpenes, flavonoids, glycosides, steroids lipids, and organic acids that are extracted from various medicinal plants. Materials and Methods: An aim to synthesize and optimize the AgNPs of Bryophyllum pinnatum leaf extract within 10 min at microwave (100 W) temperature conditions was carried out. The synthesized nanoparticles were characterized using ultraviolet–visible spectrophotometer, scanning electron microscopy, and Fourier transform infrared (FT-IR). Results: The carbonyl group that of amino acid residues has a power to bind with silver which suggested this of a layer covering AgNPs and acts as a capping agent and prevents agglomeration and assists in resist changes due to medium. The silver nanoparticles thus formed were well capped which were observed by FT-IR and showed antibacterial activity against Escherichia coli and Bacillus subtilis. Conclusion: The present investigation has evaluated that leaf extract of B. pinnatum has a potential source of reducing and capping agent for the synthesis of AgNPs. The synthesized AgNPs showed a strong antibacterial activity which is very important from the aspects of its biomedical application.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Pharmacy
Archieval Section
Not for loan 2021-2022479
Total holds: 0

Introduction: Nanotechnology has opened up novel dimensions in the field of biotechnology and medicine. Green synthesis of silver nanoparticles (AgNPs) is a clean, cost effective, and non-toxic over synthetic methods. Silver is the metal of choice as they hold the promise to kill microbes effectively. AgNPs have been recently known to be a promising antimicrobial agent that acts on a broad range of target sites both extracellularly and intracellularly. Green synthesis of AgNPs has been estimated to be rich with phytochemicals such as alkaloids, triterpenes, flavonoids, glycosides, steroids lipids, and organic acids that are extracted from various medicinal plants. Materials and Methods: An aim to synthesize and optimize the AgNPs of Bryophyllum pinnatum leaf extract within 10 min at microwave (100 W) temperature conditions was carried out. The synthesized nanoparticles were characterized using ultraviolet–visible spectrophotometer, scanning electron microscopy, and Fourier transform infrared (FT-IR). Results: The carbonyl group that of amino acid residues has a power to bind with silver which suggested this of a layer covering AgNPs and acts as a capping agent and prevents agglomeration and assists in resist changes due to medium. The silver nanoparticles thus formed were well capped which were observed by FT-IR and showed antibacterial activity against Escherichia coli and Bacillus subtilis. Conclusion: The present investigation has evaluated that leaf extract of B. pinnatum has a potential source of reducing and capping agent for the synthesis of AgNPs. The synthesized AgNPs showed a strong antibacterial activity which is very important from the aspects of its biomedical application.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha