Normal view MARC view ISBD view

Analysis of Liquefaction Potential of Coastal Sands Using Laminar Box System

By: Beena, K. S.
Contributor(s): Jayakrishnan, Veena.
Publisher: Switzerland Springer 2021Edition: Vol, 51(6), December.Description: 1209-1224p.Subject(s): Civil EngineeringOnline resources: Click here In: Indian geotechnical journalSummary: Liquefaction is considered as one of the geotechnical risks caused during an earthquake in a saturated sand deposit. Due to their loose, saturated, and cohesionless nature, the sands in the coastal area are susceptible to liquefaction when subjected to cyclic loading. This effect leads to an alteration of soil structure from a stable to an unstable liquid form. The study of liquefaction in Kerala, which is in earthquake zone III, has not been done much earlier and that would be beneficial because of increasing infrastructural development in these areas. This study presents the development of a laminar soil container for shaking table tests in Kerala, and the response of the excess pore water pressure at various locations of the contained sand. The laboratory investigation is intended to understand the effect of gradation of soil and amplitude of base shaking on the generation of excess pore water pressure at varying relative density of soil (30%, 40% and 50%) but at a constant frequency of shaking (1 Hz). The test results have indicated that soil liquefaction resistance decreases as the amplitude of base shaking increases and the relative density of soil decreases. Also, sand with a lower percentage of finer sand content and larger mean grain size showed higher resistance to liquefaction.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology (PG)
Archieval Section
Not for loan 2021-2022659
Total holds: 0

Liquefaction is considered as one of the geotechnical risks caused during an earthquake in a saturated sand deposit. Due to their loose, saturated, and cohesionless nature, the sands in the coastal area are susceptible to liquefaction when subjected to cyclic loading. This effect leads to an alteration of soil structure from a stable to an unstable liquid form. The study of liquefaction in Kerala, which is in earthquake zone III, has not been done much earlier and that would be beneficial because of increasing infrastructural development in these areas. This study presents the development of a laminar soil container for shaking table tests in Kerala, and the response of the excess pore water pressure at various locations of the contained sand. The laboratory investigation is intended to understand the effect of gradation of soil and amplitude of base shaking on the generation of excess pore water pressure at varying relative density of soil (30%, 40% and 50%) but at a constant frequency of shaking (1 Hz). The test results have indicated that soil liquefaction resistance decreases as the amplitude of base shaking increases and the relative density of soil decreases. Also, sand with a lower percentage of finer sand content and larger mean grain size showed higher resistance to liquefaction.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha