Normal view MARC view ISBD view

Estimation of residual solvents in netupitant api by headspace gas chromatography

By: Gode, Sunny Grace.
Contributor(s): Vijaya Lakshmi G.
Publisher: Bhopal Innovare Academic Sciences Pvt Ltd 2021Edition: Vol. 13 (11).Description: 47-52p.Subject(s): PHARMACEUTICAL ANALYSIS | Netupitant | Headspace gas chromatography | International conference on harmonizationOnline resources: Full Article In: International journal of pharmacy and pharmaceutical scienceSummary: Objective: Residual solvents are undesirable components present in Active Pharmaceutical Ingredients (API), excipients, or drug products. To meet the specific quality-based requirements, the presence of these solvents in pharmaceutical products should be monitored to ensure their safety. The main objective of this work is to develop a new method for the determination of residual solvents in netupitant API by an HS-GC method with an FID detector. Methods: An automated headspace GC method has been developed and validated for the estimation of the residual solvents-N-methyl pyrrolidine, xylene, toluene, and N, N Dimethylacetamide in netupitant API. The samples were dissolved in dimethyl sulfoxide and the equilibrium headspace gas was formed at 80 ᵒC, which was analyzed using a DB-624 column (30m*0.53 mm, 3.00 µm) with an injector and detector temperature set at 160 ᵒC and 230 ᵒC, respectively. The initial oven temperature was set at 60 ᵒC for 5 min and programmed at a rate of 10 ᵒC/min to the final temperature of 150 ᵒC, with a hold time of 5 min by maintaining the flow rate of 4.0 ml/min with a split ratio of 1:10, and total run time of 20 min. Nitrogen was used as carrier gas. The method developed was validated as per International Conference for Harmonization (ICH) guidelines for repeatability, linearity, range, ruggedness, detection limit, quantification limit, and recovery studies. Results: The linearity range selected was 50-350µg/ml and the correlation coefficient(γ2) values for all the solvents were found to be>0.99; recovery studies values were in a range of 90-110% and %RSD values were also found to be not more than 10 for the solvents. Conclusion: A novel, accurate, sensitive, and simple method was described for estimating residual solvents in Netupitant API by Headspace Gas Chromatography (HS-GC) coupled with a Flame Ionization Detector (FID). Excellent results have been observed for all the validated parameters with good peak resolution and lesser retention times.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)

Objective: Residual solvents are undesirable components present in Active Pharmaceutical Ingredients (API), excipients, or drug products. To meet the specific quality-based requirements, the presence of these solvents in pharmaceutical products should be monitored to ensure their safety. The main objective of this work is to develop a new method for the determination of residual solvents in netupitant API by an HS-GC method with an FID detector.

Methods: An automated headspace GC method has been developed and validated for the estimation of the residual solvents-N-methyl pyrrolidine, xylene, toluene, and N, N Dimethylacetamide in netupitant API. The samples were dissolved in dimethyl sulfoxide and the equilibrium headspace gas was formed at 80 ᵒC, which was analyzed using a DB-624 column (30m*0.53 mm, 3.00 µm) with an injector and detector temperature set at 160 ᵒC and 230 ᵒC, respectively. The initial oven temperature was set at 60 ᵒC for 5 min and programmed at a rate of 10 ᵒC/min to the final temperature of 150 ᵒC, with a hold time of 5 min by maintaining the flow rate of 4.0 ml/min with a split ratio of 1:10, and total run time of 20 min. Nitrogen was used as carrier gas. The method developed was validated as per International Conference for Harmonization (ICH) guidelines for repeatability, linearity, range, ruggedness, detection limit, quantification limit, and recovery studies.

Results: The linearity range selected was 50-350µg/ml and the correlation coefficient(γ2) values for all the solvents were found to be>0.99; recovery studies values were in a range of 90-110% and %RSD values were also found to be not more than 10 for the solvents.

Conclusion: A novel, accurate, sensitive, and simple method was described for estimating residual solvents in Netupitant API by Headspace Gas Chromatography (HS-GC) coupled with a Flame Ionization Detector (FID). Excellent results have been observed for all the validated parameters with good peak resolution and lesser retention times.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha