Normal view MARC view ISBD view

Microbial synthesis of silver nanoparticles using streptomyces sp. Pg12 and their characterization, antimicrobial activity and cytotoxicity assessment against human lung (A549) and breast (MCF-7) cancer cell lines

By: Pallavi, S. S.
Contributor(s): Bhat, Meghashyama Prabhakara.
Publisher: M P Innovare Academic Sciences Pvt Ltd 2021Edition: Vol.13(8).Description: 94-102p.Subject(s): PHARMACEUTICSOnline resources: Click here In: International journal of pharmacy and pharmaceutical scienceSummary: Objective: Synthesis of silver nanoparticles using Streptomyces sp. PG12 and their characterization, antimicrobial activity and cytotoxicity against A549 and MCF-7 cancer cell lines. Methods: The silver nanoparticles were subjected to UV-Vis. spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDS), high-resolution transmission electron microscopy (HR-TEM), zeta potential, and X-ray diffractometry (XRD) analyses. Further, the antimicrobial potential was determined by using the agar well diffusion method and cytotoxicity was determined with the help of cell viability (MTT) assay and reactive oxygen species (ROS) assay. Results: The initial indication of silver nanoparticles synthesis was noticed by the colour change in the reaction mixture and the absorption maximum at 421 nm in UV-Vis. analysis; whereas, the FTIR analysis displayed the biological functional groups responsible for the capping and stabilization of silver nanoparticles. SEM and TEM micrographs revealed the surface morphology, spherical shape, and smallest particle size as 18.91 nm. The EDS and XRD patterns confirmed the involvement of various elements during the synthesis of silver nanoparticles and the crystalline, face-centered cubic nature, respectively. The silver nanoparticles displayed considerable antimicrobial activity against human pathogens even at low MIC and MBC concentrations and exhibited increased anticancer activity against A549 and MCF-7 cell lines, where the ability of silver nanoparticles to significantly restrict the growth of tumour cells was observed at IC50 values of 69.04μg/ml and 138.30μg/ml, respectively.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Pharmacy
Archieval Section
Not for loan 2022-0419
Total holds: 0

Objective: Synthesis of silver nanoparticles using Streptomyces sp. PG12 and their characterization, antimicrobial activity and cytotoxicity against A549 and MCF-7 cancer cell lines. Methods: The silver nanoparticles were subjected to UV-Vis. spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDS), high-resolution transmission electron microscopy (HR-TEM), zeta potential, and X-ray diffractometry (XRD) analyses. Further, the antimicrobial potential was determined by using the agar well diffusion method and cytotoxicity was determined with the help of cell viability (MTT) assay and reactive oxygen species (ROS) assay. Results: The initial indication of silver nanoparticles synthesis was noticed by the colour change in the reaction mixture and the absorption maximum at 421 nm in UV-Vis. analysis; whereas, the FTIR analysis displayed the biological functional groups responsible for the capping and stabilization of silver nanoparticles. SEM and TEM micrographs revealed the surface morphology, spherical shape, and smallest particle size as 18.91 nm. The EDS and XRD patterns confirmed the involvement of various elements during the synthesis of silver nanoparticles and the crystalline, face-centered cubic nature, respectively. The silver nanoparticles displayed considerable antimicrobial activity against human pathogens even at low MIC and MBC concentrations and exhibited increased anticancer activity against A549 and MCF-7 cell lines, where the ability of silver nanoparticles to significantly restrict the growth of tumour cells was observed at IC50 values of 69.04μg/ml and 138.30μg/ml, respectively.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha