Normal view MARC view ISBD view

Influences of cattaneo-christov heat flux, joule heating, viscous dissipation and chemical reaction on hydromagnetic pulsating flow of oldroyd-B nanofluid in a porous channel

By: Venkatesan, G.
Contributor(s): Reddy, Anala Subramanyam.
Publisher: New Delhi CSIR 2022Edition: Vol.60(5), May.Description: 437-448p.Subject(s): Humanities and Applied SciencesOnline resources: Click here In: Indian journal of pure & applied physics (IJPAP)Summary: In this present study, Cattaneo-Christov heat flux on the hydromagnetic pulsatile flow of Oldroyd-B nanofluid through a porous channel with the presence of Brownian motion, thermal radiation, and thermophoresis effects are studied. The effects of dissipation of viscous and Ohmic heating are considered. The Buongiorno model is taken into account in this analysis. By using the perturbation method the governing partial differential equations (PDEs) are converted into the ordinary differential equations (ODEs) and solved numerically by employing the Runge-Kutta 4th-order scheme along with shooting approach. The influence of distinct parameters on velocity, temperature, nanoparticle concentration, heat and mass transfer rates are examined in detail. The results indicate that nanofluid velocity increases with higher frequency parameter, and while it falls with rising Hartmann number, and cross-flow Reynolds number. An increase in thermophoresis parameter, Eckert number, radiation parameter, Brownian motion parameter leads to a rise in temperature whereas temperature decreases for increasing Hartmann number and thermal relaxation time parameter. Moreover, the nanoparticle concentration enhances with an increasing thermophoresis parameter, thermal relaxation time parameter while it falls with the rising values of Lewis number, chemical reaction parameter and Brownian motion parameter.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2022-1834
Total holds: 0

In this present study, Cattaneo-Christov heat flux on the hydromagnetic pulsatile flow of Oldroyd-B nanofluid through a porous channel with the presence of Brownian motion, thermal radiation, and thermophoresis effects are studied. The effects of dissipation of viscous and Ohmic heating are considered. The Buongiorno model is taken into account in this analysis. By using the perturbation method the governing partial differential equations (PDEs) are converted into the ordinary differential equations (ODEs) and solved numerically by employing the Runge-Kutta 4th-order scheme along with shooting approach. The influence of distinct parameters on velocity, temperature, nanoparticle concentration, heat and mass transfer rates are examined in detail. The results indicate that nanofluid velocity increases with higher frequency parameter, and while it falls with rising Hartmann number, and cross-flow Reynolds number. An increase in thermophoresis parameter, Eckert number, radiation parameter, Brownian motion parameter leads to a rise in temperature whereas temperature decreases for increasing Hartmann number and thermal relaxation time parameter. Moreover, the nanoparticle concentration enhances with an increasing thermophoresis parameter, thermal relaxation time parameter while it falls with the rising values of Lewis number, chemical reaction parameter and Brownian motion parameter.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha