Normal view MARC view ISBD view

Review on formulation and evaluation of solid lipid nanoparticles for vaginal application

By: Pallerla, Priyanka.
Contributor(s): Sri Rekha M.
Publisher: M P Innovare Academic Sciences Pvt Ltd 2022Edition: Vol.14(1).Description: 1-8p.Subject(s): PHARMACEUTICSOnline resources: Click here In: International journal of pharmacy and pharmaceutical scienceSummary: Vaginal drug administration can improve prophylaxis and treatment of many conditions affecting the female reproductive tract, which includes fungal and bacterial infections, sexually transmitted diseases and cancer also. This is the best route for the administration of proteins, peptides, and also other therapeutic drugs like macro-molecules. For the administration of drugs like contraceptives, steroids, metronidazole, anti-retroviral, vaginal drug delivery is the most preferable route. However, achieving sufficient drug concentration in the vagina can be challenging because of its low permeability. The benefits of the vaginal drug delivery system are it increases the bioavailability, least systemic side effects; easiness of use and self-medication is possible. However vaginal drug delivery system is considered as a less effective route because of the unfortunate absorption of drugs across the vaginal epithelium. The traditional commercial preparations, such as creams, foams, gels, irrigations and tablets, are known to reside in the vaginal cavity for a relatively short period of time owing to the self-cleaning action of the vaginal tract and often require multiple daily doses to ensure the desired therapeutic effect. With the rapidly developing field of nanotechnology, the use of specifically designed carrier systems such as Nanoparticle-based drug delivery has been proven an excellent choice for vaginal application to overcome the challenges associated with the low permeability.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Pharmacy
Archieval Section
Not for loan 2022-1913
Total holds: 0

Vaginal drug administration can improve prophylaxis and treatment of many conditions affecting the female reproductive tract, which includes fungal and bacterial infections, sexually transmitted diseases and cancer also. This is the best route for the administration of proteins, peptides, and also other therapeutic drugs like macro-molecules. For the administration of drugs like contraceptives, steroids, metronidazole, anti-retroviral, vaginal drug delivery is the most preferable route. However, achieving sufficient drug concentration in the vagina can be challenging because of its low permeability. The benefits of the vaginal drug delivery system are it increases the bioavailability, least systemic side effects; easiness of use and self-medication is possible. However vaginal drug delivery system is considered as a less effective route because of the unfortunate absorption of drugs across the vaginal epithelium. The traditional commercial preparations, such as creams, foams, gels, irrigations and tablets, are known to reside in the vaginal cavity for a relatively short period of time owing to the self-cleaning action of the vaginal tract and often require multiple daily doses to ensure the desired therapeutic effect. With the rapidly developing field of nanotechnology, the use of specifically designed carrier systems such as Nanoparticle-based drug delivery has been proven an excellent choice for vaginal application to overcome the challenges associated with the low permeability.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha