Normal view MARC view ISBD view

Ginger loaded chitosan nanoparticles for the management of 3–nitropropionic acid-induced huntington’s disease-like symptoms in male wistar rats

By: Akila, R. M.
Contributor(s): Shaji, Dona Maria.
Publisher: M P Innovare Academic Sciences Pvt Ltd 2022Edition: Vol.14(1).Description: 28-36p.Subject(s): PHARMACEUTICSOnline resources: Click here In: International journal of pharmacy and pharmaceutical scienceSummary: Objective:The purpose of this research work is to enhance bioavailability and brain delivery of ginger through the development of ginger-loaded chitosan nanoparticles and evaluation of its neuroprotective potential against 3-Nitropropionic acid (3-NP) induced Huntington’s Disease model rats.Methods:Ginger-loaded chitosan nanoparticles were developed as five different formulations (F1-F5) by the ionic gelation method. Based on their release, formulations F1 and F3 were chosen for physicochemical characterization. The neuroprotective activity of formulations F1 and F3 were evaluated by behavioural (Neurological scoring, Hanging wire test, Elevated plus maze test), biochemical (estimation of lipid peroxidation, glutathione, protein, superoxide dismutase, catalase) and neurochemical (estimation of acetylcholine esterase inhibition) tests in comparison with ginger extract in Huntington’s Disease (HD) model rats. Results: Formulations F1 and F3 showed almost similar and significant controlled release. Formulation F1 showed spherical nanoparticles with optimum size range and negative zeta potential. The behavioural assessment revealed that there was an improvement in gait, movement, grip strength and memory in ginger-loaded chitosan nanoformulations administered to rats than ginger extract administered rats. Biochemical and neurochemical analyses also proved that ginger-loaded chitosan nanoformulations had greatly lowered the oxidative stress parameters such as malondialdehyde and protein carbonyls in comparison with ginger extract (p<0.05). The ginger nanoformulations had highly increased the activity of antioxidant enzymes such as superoxide dismutase, glutathione and catalase by reducing the formation of free radicals than ginger extract (p<0.05). The memory and cognition of ginger nanoformulations administered Wistar rats had highly improved than ginger extract administered Wistar rats (p<0.05 due to inhibition of acetylcholine esterase enzyme). Conclusion:The current study indicated that ginger-loaded chitosan nanoparticles have a superior neuroprotective effect than their extract due to their nano size, which facilitates their entry across the blood-brain barrier and eventually improves the bioavailability of ginger.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Pharmacy
Archieval Section
Not for loan 2022-1945
Total holds: 0

Objective:The purpose of this research work is to enhance bioavailability and brain delivery of ginger through the development of ginger-loaded chitosan nanoparticles and evaluation of its neuroprotective potential against 3-Nitropropionic acid (3-NP) induced Huntington’s Disease model rats.Methods:Ginger-loaded chitosan nanoparticles were developed as five different formulations (F1-F5) by the ionic gelation method. Based on their release, formulations F1 and F3 were chosen for physicochemical characterization. The neuroprotective activity of formulations F1 and F3 were evaluated by behavioural (Neurological scoring, Hanging wire test, Elevated plus maze test), biochemical (estimation of lipid peroxidation, glutathione, protein, superoxide dismutase, catalase) and neurochemical (estimation of acetylcholine esterase inhibition) tests in comparison with ginger extract in Huntington’s Disease (HD) model rats. Results: Formulations F1 and F3 showed almost similar and significant controlled release. Formulation F1 showed spherical nanoparticles with optimum size range and negative zeta potential. The behavioural assessment revealed that there was an improvement in gait, movement, grip strength and memory in ginger-loaded chitosan nanoformulations administered to rats than ginger extract administered rats. Biochemical and neurochemical analyses also proved that ginger-loaded chitosan nanoformulations had greatly lowered the oxidative stress parameters such as malondialdehyde and protein carbonyls in comparison with ginger extract (p<0.05). The ginger nanoformulations had highly increased the activity of antioxidant enzymes such as superoxide dismutase, glutathione and catalase by reducing the formation of free radicals than ginger extract (p<0.05). The memory and cognition of ginger nanoformulations administered Wistar rats had highly improved than ginger extract administered Wistar rats (p<0.05 due to inhibition of acetylcholine esterase enzyme). Conclusion:The current study indicated that ginger-loaded chitosan nanoparticles have a superior neuroprotective effect than their extract due to their nano size, which facilitates their entry across the blood-brain barrier and eventually improves the bioavailability of ginger.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha