Normal view MARC view ISBD view

Development of nano based film forming gel for prolonged dermal delivery of luliconazole

By: Subair, T. K.
Contributor(s): Mohanan, Jisha.
Publisher: M P Innovare Academic Sciences Pvt Ltd 2022Edition: Vol.14(2).Description: 31-41p.Subject(s): PHARMACEUTICSOnline resources: Click here In: International journal of pharmacy and pharmaceutical scienceSummary: Objective:Luliconazole (LZL) has low aqueous solubility that limits its dermal bioavailability and acts as a barrier to topical delivery. The conventional topical formulations have a limited ability to retain the drug over the skin for a prolonged period. The main objective of the study was to formulate and characterize LZL loaded ethyl cellulose (EC) nanoparticles and formulate them as a film-forming gel (FFG) for prolonged delivery in fungal skin infections.Methods: The solvent evaporation technique was used for the preparation of nanoparticles of LZL by using EC as a polymer. The prepared nanoparticles were evaluated for physical appearance, production yield, entrapment efficiency, drug content, particle size, zeta potential, Polydispersity index (PDI), and in vitro drug release. Then the nanoparticles were incorporated into FFG formulation by using polyvinyl pyrrolidone(PVP) and polyvinyl alcohol (PVA) as the gelling agent. The prepared FFG was evaluated for pH, Viscosity, Spreadability, in vitro drug release studies, in vitro antifungal studies, and release kinetic studies.Results: The optimized nanoparticle formulation F5 having drug to polymer ratio of 1:2 showed satisfactory production yield (86.32%), entrapment efficiency (83.36%), drug content (42.86), particle size (125.3), and 93.72% of in vitro drug release after 24 h (h). The optimized FFG formulation FFG4 showed the shortest fil m-forming time of 5.06 min (min), percentage Cumulative drug release of 92.18% after 24 h, and had promising in vitro antifungal activity.Conclusion: The prepared FFG could be used with promising potential for fungal infection of the skin.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Pharmacy
Archieval Section
Not for loan 2022-1963
Total holds: 0

Objective:Luliconazole (LZL) has low aqueous solubility that limits its dermal bioavailability and acts as a barrier to topical delivery. The conventional topical formulations have a limited ability to retain the drug over the skin for a prolonged period. The main objective of the study was to formulate and characterize LZL loaded ethyl cellulose (EC) nanoparticles and formulate them as a film-forming gel (FFG) for prolonged delivery in fungal skin infections.Methods: The solvent evaporation technique was used for the preparation of nanoparticles of LZL by using EC as a polymer. The prepared nanoparticles were evaluated for physical appearance, production yield, entrapment efficiency, drug content, particle size, zeta potential, Polydispersity index (PDI), and in vitro drug release. Then the nanoparticles were incorporated into FFG formulation by using polyvinyl pyrrolidone(PVP) and polyvinyl alcohol (PVA) as the gelling agent. The prepared FFG was evaluated for pH, Viscosity, Spreadability, in vitro drug release studies, in vitro antifungal studies, and release kinetic studies.Results: The optimized nanoparticle formulation F5 having drug to polymer ratio of 1:2 showed satisfactory production yield (86.32%), entrapment efficiency (83.36%), drug content (42.86), particle size (125.3), and 93.72% of in vitro drug release after 24 h (h). The optimized FFG formulation FFG4 showed the shortest fil m-forming time of 5.06 min (min), percentage Cumulative drug release of 92.18% after 24 h, and had promising in vitro antifungal activity.Conclusion: The prepared FFG could be used with promising potential for fungal infection of the skin.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha