Normal view MARC view ISBD view

Synthesis of nitrogen mustard-based fluorophores for cell imaging and cytotoxicity studies

By: Liang, Yuanwei.
Contributor(s): Liang, Maojun.
Publisher: Mumbai Wolter Kluwer 2023Edition: Vol.14(1), Jan-Mar.Description: 6-11p.Subject(s): PHARMACEUTICSOnline resources: Click here In: Journal of advanced pharmaceutical technology and researchSummary: Nitrogen mustards are important alkylating anticancer drugs used for neoplasms treatment. However, little research about the integration of luminophore into nitrogen mustard-based compounds for both imaging and therapeutic application was reported. In this study, we report a series of novel nitrogen mustard-containing 1-furyl-2-en-1-one and 1-thienyl-2-en-1-one derivatives as intramolecular charge transfer-based luminophore for research in both imaging subcellular localization and antiproliferation toward lung cancer cells. The target products were prepared by Knoevenagel condensation and characterized by nuclear magnetic resonance and high-resolution mass spectrometer. The absorption and fluorescence studies were carried out by ultraviolet-visible and fluorescence spectrophotometers, respectively. Cell morphology was observed under an inverted microscope. Cytotoxicity test was detected by MTT assay. Cellular localization was observed by a confocal laser scanning microscope. Colony formation ability was carried out by colony formation assay. Cell migration ability was detected by transwell migration assay. Differences between the two groups were analyzed by two-tailed Student's t-test. The difference with P < 0.05 (*) was considered statistically significant. The compounds were synthesized in high yield. The λmax and Stokes shift of these compounds reach up to 567 and 150 nm, respectively. These compounds exhibited good antiproliferative activity against lung cancer cells, with compound 3h exhibiting the best IC50 of 13.1 ± 2.7 μM. Furthermore, the selected compound 3h is located preferentially in lysosomes and a small amount in nuclei, effectively inhibiting cell colony formation and migration abilities toward A549 cells. These findings suggested that nitrogen mustard-based fluorophores might be a potential effective chemotherapeutic agent in lung cancer therapy.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Pharmacy
Archieval Section
Not for loan 2023-1108
Total holds: 0

Nitrogen mustards are important alkylating anticancer drugs used for neoplasms treatment. However, little research about the integration of luminophore into nitrogen mustard-based compounds for both imaging and therapeutic application was reported. In this study, we report a series of novel nitrogen mustard-containing 1-furyl-2-en-1-one and 1-thienyl-2-en-1-one derivatives as intramolecular charge transfer-based luminophore for research in both imaging subcellular localization and antiproliferation toward lung cancer cells. The target products were prepared by Knoevenagel condensation and characterized by nuclear magnetic resonance and high-resolution mass spectrometer. The absorption and fluorescence studies were carried out by ultraviolet-visible and fluorescence spectrophotometers, respectively. Cell morphology was observed under an inverted microscope. Cytotoxicity test was detected by MTT assay. Cellular localization was observed by a confocal laser scanning microscope. Colony formation ability was carried out by colony formation assay. Cell migration ability was detected by transwell migration assay. Differences between the two groups were analyzed by two-tailed Student's t-test. The difference with P < 0.05 (*) was considered statistically significant. The compounds were synthesized in high yield. The λmax and Stokes shift of these compounds reach up to 567 and 150 nm, respectively. These compounds exhibited good antiproliferative activity against lung cancer cells, with compound 3h exhibiting the best IC50 of 13.1 ± 2.7 μM. Furthermore, the selected compound 3h is located preferentially in lysosomes and a small amount in nuclei, effectively inhibiting cell colony formation and migration abilities toward A549 cells. These findings suggested that nitrogen mustard-based fluorophores might be a potential effective chemotherapeutic agent in lung cancer therapy.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha