Normal view MARC view ISBD view

Influence of bifurcated fracture angle on mechanical behavior of rock blocks

By: Feng, Peichao.
Contributor(s): Haichun, Ma.
Publisher: USA Springer 2023Edition: Vol.53(3), Jun.Description: 622-633p.Subject(s): Civil EngineeringOnline resources: Click here In: Indian geotechnical journalSummary: The bifurcated fracture is distributed in nature, and its deformation and destruction occur under natural and man-made force. The study is carried out based on experiments and simulations to analyze the behavior of rock with bifurcated fractures under pressure. Bifurcated fracture causes the bending of the rock blocks on both sides and produces the tensile fractures under pressure. The lateral blocks with tensile fracture lead to the displacement of the intermediate block. By changing the bifurcated angle between fractures, the displacement characteristics of rock caused by block fractures are studied. The angle affects deformation, stress field, fracture mechanism, and displacement of rock with bifurcated fractures. The angle changes the stress magnitude and distribution of the rock blocks, affecting the initiation and expansion of the tension fractures at the bending side of the rock. Peak value of stress decreases with the decrease in bifurcated angle. The displacement difference between the two blocks will become larger. With the decrease in the pressure, deformation increases with time and the deformation rate decreases with time. The smaller the angle, the more difficult it is for the intermediate block to move out. Bifurcated angle of rock fracture has significant effects on the stability of the rock. The results could provide a reference for the stability of rock engineering.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology (PG)
Archieval Section
Not for loan 2023-1213
Total holds: 0

The bifurcated fracture is distributed in nature, and its deformation and destruction occur under natural and man-made force. The study is carried out based on experiments and simulations to analyze the behavior of rock with bifurcated fractures under pressure. Bifurcated fracture causes the bending of the rock blocks on both sides and produces the tensile fractures under pressure. The lateral blocks with tensile fracture lead to the displacement of the intermediate block. By changing the bifurcated angle between fractures, the displacement characteristics of rock caused by block fractures are studied. The angle affects deformation, stress field, fracture mechanism, and displacement of rock with bifurcated fractures. The angle changes the stress magnitude and distribution of the rock blocks, affecting the initiation and expansion of the tension fractures at the bending side of the rock. Peak value of stress decreases with the decrease in bifurcated angle. The displacement difference between the two blocks will become larger. With the decrease in the pressure, deformation increases with time and the deformation rate decreases with time. The smaller the angle, the more difficult it is for the intermediate block to move out. Bifurcated angle of rock fracture has significant effects on the stability of the rock. The results could provide a reference for the stability of rock engineering.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha