Normal view MARC view ISBD view

Traffic crash severity: comparing the predictive performance of popular statistical and machine learning models using the glasgow coma scale

By: Mehraab, Nazir.
Contributor(s): Illahi, Ubaid.
Publisher: USA Springer 2023Edition: Vol.104(2), Jun.Description: 435-446p.Subject(s): Humanities and Applied SciencesOnline resources: Click here In: Journal of the institution of engineers (India): Series ASummary: Crash severity analysis and prediction is a promising field in traffic safety. Various statistical methods have been used to model the severity of road crashes. However, machine learning algorithms have gained popularity in recent years. This study compares the predictive performance of various machine learning and statistical models, including prediction accuracy, and determines the influence of various variables on crash severity. The crash severity data were collected from a Hospital in Kashmir (India), an area with mixed topography. The crash severity levels (CSLs) were represented in the Glasgow Coma Scale (GCS). For estimations, the two statistical models, logistic regression (LR) and decision tree (DT), and four machine learning models, including random forest (RF), support vector machine (SVM), gradient boosted tree (GBT), and extreme gradient boosting (XG BOOST), have been used. The results show that the machine learning models have higher prediction accuracy than the statistical models. Among all, the GBT model has the best overall prediction accuracy, particularly in the prediction of individual CSLs while LR was found to have the least accuracy. The influence of variables on CSL was found from DT and GBT. Both models have indicated that ‘time’ as a variable was the most influencing, followed by the casualty class of pedestrians over the CSLs. The results also show that the variable influences over CSL were different from different models. Based on the influence of variables, certain policy implications are suggested, which might aid the transportation department, and other concerned departments to reduce the severity and number of road traffic crashes (RTCs).
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2023-1745
Total holds: 0

Crash severity analysis and prediction is a promising field in traffic safety. Various statistical methods have been used to model the severity of road crashes. However, machine learning algorithms have gained popularity in recent years. This study compares the predictive performance of various machine learning and statistical models, including prediction accuracy, and determines the influence of various variables on crash severity. The crash severity data were collected from a Hospital in Kashmir (India), an area with mixed topography. The crash severity levels (CSLs) were represented in the Glasgow Coma Scale (GCS). For estimations, the two statistical models, logistic regression (LR) and decision tree (DT), and four machine learning models, including random forest (RF), support vector machine (SVM), gradient boosted tree (GBT), and extreme gradient boosting (XG BOOST), have been used. The results show that the machine learning models have higher prediction accuracy than the statistical models. Among all, the GBT model has the best overall prediction accuracy, particularly in the prediction of individual CSLs while LR was found to have the least accuracy. The influence of variables on CSL was found from DT and GBT. Both models have indicated that ‘time’ as a variable was the most influencing, followed by the casualty class of pedestrians over the CSLs. The results also show that the variable influences over CSL were different from different models. Based on the influence of variables, certain policy implications are suggested, which might aid the transportation department, and other concerned departments to reduce the severity and number of road traffic crashes (RTCs).

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha