Normal view MARC view ISBD view

Design and manufacturing of embedded air-muscles for a magnetic resonance imaging compatible prostate cancer binary manipulator

By: Miron, Geneviève.
Contributor(s): Girard, Alexandre.
Publisher: New York ASME 2013Edition: Vol.135(1), Jan.Description: 1-10p.Subject(s): Mechanical EngineeringOnline resources: Click here In: Journal of mechanical designSummary: Magnetic resonance imaging (MRI) compatible robots can assist physicians with the insertion of biopsy needles and needle-like therapeutic instruments directly into millimeter-size tumors, using MR images as feedback. However, MRI systems present a challenging environment with high magnetic fields and limited space, making the development of MRI-compatible robots complex. This paper presents an MRI-compatible pneumatic actuation technology consisting of molded polymer structures with embedded air-muscles operated in a binary fashion. Along with its good positioning accuracy, the technology presents advantages of compactness, perfect MRI-compatibility, simplicity and low cost. Here, we specifically report the design and validation of a transperineal prostate cancer manipulator prototype that has 20 embedded air-muscles distributed in four star-like polymer structures. These compliant structures are made of silicone elastomer, using lost-core injection molding. Low motion hysteresis and good precision are achieved by designing molded joints that eliminate sliding surfaces. An effective design method for such embedded polymer air-muscles is proposed, using a manipulator model and four air-muscle design models: geometrical, finite elements, uniaxial analytic, and experimental. Binary control of each air-muscle ensures stability and accuracy with minimized costs and complexity. The prototype is found MRI-compatible with no observable effects on the signal-to-noise ratio and, with appropriate image feedback, is found to reach targets with precision and accuracy under 0.5 mm. The embedded approach reveals to be a key feature since it reduces hysteresis errors by a factor of ≈7 compared to a previous nonembedded version of the manipulator.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2024-0634
Total holds: 0

Magnetic resonance imaging (MRI) compatible robots can assist physicians with the insertion of biopsy needles and needle-like therapeutic instruments directly into millimeter-size tumors, using MR images as feedback. However, MRI systems present a challenging environment with high magnetic fields and limited space, making the development of MRI-compatible robots complex. This paper presents an MRI-compatible pneumatic actuation technology consisting of molded polymer structures with embedded air-muscles operated in a binary fashion. Along with its good positioning accuracy, the technology presents advantages of compactness, perfect MRI-compatibility, simplicity and low cost. Here, we specifically report the design and validation of a transperineal prostate cancer manipulator prototype that has 20 embedded air-muscles distributed in four star-like polymer structures. These compliant structures are made of silicone elastomer, using lost-core injection molding. Low motion hysteresis and good precision are achieved by designing molded joints that eliminate sliding surfaces. An effective design method for such embedded polymer air-muscles is proposed, using a manipulator model and four air-muscle design models: geometrical, finite elements, uniaxial analytic, and experimental. Binary control of each air-muscle ensures stability and accuracy with minimized costs and complexity. The prototype is found MRI-compatible with no observable effects on the signal-to-noise ratio and, with appropriate image feedback, is found to reach targets with precision and accuracy under 0.5 mm. The embedded approach reveals to be a key feature since it reduces hysteresis errors by a factor of ≈7 compared to a previous nonembedded version of the manipulator.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha