Normal view MARC view ISBD view

Co-evolutionary optimization for multi-objective design under uncertainty

By: Coelho, Rajan Filomeno.
Publisher: New York ASME 2013Edition: Vol.135(2), Feb.Description: 1-8p.Subject(s): Mechanical EngineeringOnline resources: Click here In: Journal of mechanical designSummary: This paper focuses on multi-objective optimization under uncertainty for mechanical design, through a reliability-based formulation referring to the concept of probabilistic nondominance. To address this problem, the implementation of a co-evolutionary strategy is advocated, consisting of the concurrent evolution of two intertwined populations optimized according to coupled subproblems: the upper level optimizer handles the design variables, whereas the corresponding values of the probabilistic thresholds for the objectives (namely the reliable nondominated front) are retrieved at the lower stage. The proposed methodology is successfully applied to six analytical test cases, as well as to the sizing optimization of two truss structures, demonstrating an improved capacity to cover wider ranges of the reliable nondominated front in comparison with all-at-once strategies tackling all types of variables simultaneously.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2024-0648
Total holds: 0

This paper focuses on multi-objective optimization under uncertainty for mechanical design, through a reliability-based formulation referring to the concept of probabilistic nondominance. To address this problem, the implementation of a co-evolutionary strategy is advocated, consisting of the concurrent evolution of two intertwined populations optimized according to coupled subproblems: the upper level optimizer handles the design variables, whereas the corresponding values of the probabilistic thresholds for the objectives (namely the reliable nondominated front) are retrieved at the lower stage. The proposed methodology is successfully applied to six analytical test cases, as well as to the sizing optimization of two truss structures, demonstrating an improved capacity to cover wider ranges of the reliable nondominated front in comparison with all-at-once strategies tackling all types of variables simultaneously.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha