Normal view MARC view ISBD view

Topology optimization of piezoelectric energy harvesting skin using hybrid cellular automata

By: Lee, Soobum.
Contributor(s): Tovar, Andrés.
Publisher: New York ASME 2013Edition: Vol.135(3), Mar.Description: 1-11p.Subject(s): Mechanical EngineeringOnline resources: Click here In: Journal of mechanical designSummary: An earlier study introduced the concept of piezoelectric energy-harvesting skin (EHS) to harvest energy by attaching thin piezoelectric patches onto a vibrating skin. This paper presents a methodology for the optimum design of EHS with the use of an efficient topology optimization method referred to as the hybrid cellular automaton (HCA) algorithm. The design domain of the piezoelectric material is discretized into cellular automata (CA), and the response of each CA is measured using high-fidelity finite-element analysis of a vibrating structure. The CA properties are parameterized using nonlinear interpolation functions that follow the principles of the SIMP model. The HCA algorithm finds the optimal densities and polarizing directions at each CA that maximize the output power from the EHS. The performance of this approach is demonstrated for the optimal design of EHS in two real-world case studies.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2024-0652
Total holds: 0

An earlier study introduced the concept of piezoelectric energy-harvesting skin (EHS) to harvest energy by attaching thin piezoelectric patches onto a vibrating skin. This paper presents a methodology for the optimum design of EHS with the use of an efficient topology optimization method referred to as the hybrid cellular automaton (HCA) algorithm. The design domain of the piezoelectric material is discretized into cellular automata (CA), and the response of each CA is measured using high-fidelity finite-element analysis of a vibrating structure. The CA properties are parameterized using nonlinear interpolation functions that follow the principles of the SIMP model. The HCA algorithm finds the optimal densities and polarizing directions at each CA that maximize the output power from the EHS. The performance of this approach is demonstrated for the optimal design of EHS in two real-world case studies.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha