Normal view MARC view ISBD view

Dynamic electromechanical field concentrations near electrodes in piezoelectric thick films for the design of MEMS mirrors

By: Shindo, Yasuhide.
Contributor(s): Narita, Fumio.
Publisher: New York ASME 2012Edition: Vol.134(5), May.Description: 1-6p.Subject(s): Mechanical EngineeringOnline resources: Click here In: Journal of mechanical designSummary: This paper studies the dynamic electromechanical response of piezoelectric mirrors driven by piezoelectric lead zirconate titanate (PZT) thick films both numerically and experimentally. The resonant frequency and the mirror tilt angle of piezoelectric mirrors under ac electric fields were analyzed by three-dimensional finite element method. The dynamic electromechanical field concentrations due to electrodes were also simulated and the results were discussed in detail. The mirrors consisted of four partially poled PZT unimorphs. The resonant frequency was then measured, and a comparison was made between the analysis and the experiment. The finite element method is shown to be capable of estimating the electromechanical field concentrations in the PZT films, making it a useful tool for designing future microelectromechanical systems (MEMS) mirrors.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2024-0676
Total holds: 0

This paper studies the dynamic electromechanical response of piezoelectric mirrors driven by piezoelectric lead zirconate titanate (PZT) thick films both numerically and experimentally. The resonant frequency and the mirror tilt angle of piezoelectric mirrors under ac electric fields were analyzed by three-dimensional finite element method. The dynamic electromechanical field concentrations due to electrodes were also simulated and the results were discussed in detail. The mirrors consisted of four partially poled PZT unimorphs. The resonant frequency was then measured, and a comparison was made between the analysis and the experiment. The finite element method is shown to be capable of estimating the electromechanical field concentrations in the PZT films, making it a useful tool for designing future microelectromechanical systems (MEMS) mirrors.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha