Normal view MARC view ISBD view

Design of an active ankle-foot prosthesis utilizing a four-bar mechanism

By: Bergelin, Bryan J.
Contributor(s): Voglewede, Philip A.
Publisher: New York ASME 2012Edition: Vol.134(6), Jun.Description: 1-7p.Subject(s): Mechanical EngineeringOnline resources: Click here In: Journal of mechanical designSummary: This article discusses the design and testing of a powered ankle prosthesis. This new prosthesis mimics nonamputee (normal) ankle moments during the stance phase of gait through the use of an optimized spring loaded four-bar mechanism. A prototype prosthesis based on the optimization was designed, fabricated, and tested. The experimental results achieved 93.3% of the simulated theoretical ankle moment giving substantial evidence that this approach is a viable in designing powered ankle prostheses.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2024-0687
Total holds: 0

This article discusses the design and testing of a powered ankle prosthesis. This new prosthesis mimics nonamputee (normal) ankle moments during the stance phase of gait through the use of an optimized spring loaded four-bar mechanism. A prototype prosthesis based on the optimization was designed, fabricated, and tested. The experimental results achieved 93.3% of the simulated theoretical ankle moment giving substantial evidence that this approach is a viable in designing powered ankle prostheses.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha