Normal view MARC view ISBD view

Conceptual design method for reducing brake squeal in disk brake systems considering unpredictable usage factors

By: Matsushima, Toru.
Contributor(s): Izui, Kazuhiro.
Publisher: New York ASME 2012Edition: Vol.134(6), Jun.Description: 1-14p.Subject(s): Mechanical EngineeringOnline resources: Click here In: Journal of mechanical designSummary: Minimizing brake squeal is one of the most important issues in the development of high performance braking systems. Furthermore, brake squeal occurs due to the changes in unpredictable factors such as the friction coefficient, contact stiffness, and pressure distribution along the contact surfaces of the brake disk and brake pads. This paper proposes a conceptual design method for disk brake systems that specifically aims to reduce the occurrence of low frequency brake squeal at frequencies below 5 kHz by appropriately modifying the shapes of brake system components to obtain designs that are robust against changes in the above unpredictable factors. A design example is provided and the validity of the obtained optimal solutions is then verified through real-world experiments. The proposed optimization method can provide useful design information at the conceptual design stage during the development of robust disk brake systems that maximize the performance while minimizing the occurrence of brake squeal despite the presence of unpredictable usage factors.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2024-0691
Total holds: 0

Minimizing brake squeal is one of the most important issues in the development of high performance braking systems. Furthermore, brake squeal occurs due to the changes in unpredictable factors such as the friction coefficient, contact stiffness, and pressure distribution along the contact surfaces of the brake disk and brake pads. This paper proposes a conceptual design method for disk brake systems that specifically aims to reduce the occurrence of low frequency brake squeal at frequencies below 5 kHz by appropriately modifying the shapes of brake system components to obtain designs that are robust against changes in the above unpredictable factors. A design example is provided and the validity of the obtained optimal solutions is then verified through real-world experiments. The proposed optimization method can provide useful design information at the conceptual design stage during the development of robust disk brake systems that maximize the performance while minimizing the occurrence of brake squeal despite the presence of unpredictable usage factors.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha