Normal view MARC view ISBD view

Contribution to the design of robust profile modifications in spur and helical gears by combining analytical results and numerical simulations

By: Ghribi, D.
Contributor(s): Bruyère, J.
Publisher: New York ASME 2012Edition: Vol.134(6), Jun.Description: 1-9p.Subject(s): Mechanical EngineeringOnline resources: Click here In: Journal of mechanical designSummary: This paper addresses the definition of robust profile modifications in spur and helical gears. An original methodology is introduced which relies on closed-form analytical results on transmission errors combined with a gradient descent algorithm and a Gauss quadrature (GQ) based full factorial method. The results compare very well with those delivered by using classic Monte Carlo simulations with a considerable gain in computational time. The influence of the probability distribution law for the design parameters (depth and extent of modification) is analyzed along with the contribution of gear quality grade and load variation. Some optimum robust linear relief is presented which minimizes transmission error fluctuations over a broad range of loads even in the presence of significant geometrical tolerances.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2024-0694
Total holds: 0

This paper addresses the definition of robust profile modifications in spur and helical gears. An original methodology is introduced which relies on closed-form analytical results on transmission errors combined with a gradient descent algorithm and a Gauss quadrature (GQ) based full factorial method. The results compare very well with those delivered by using classic Monte Carlo simulations with a considerable gain in computational time. The influence of the probability distribution law for the design parameters (depth and extent of modification) is analyzed along with the contribution of gear quality grade and load variation. Some optimum robust linear relief is presented which minimizes transmission error fluctuations over a broad range of loads even in the presence of significant geometrical tolerances.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha