Normal view MARC view ISBD view

Computationally efficient combined plant design and controller optimization using a coupling measure

By: Patil, Rakesh.
Contributor(s): Filipi, Zoran.
Publisher: New York ASME 2012Edition: Vol.134(7), Jul.Description: 1-8p.Subject(s): Mechanical EngineeringOnline resources: Click here In: Journal of mechanical designSummary: This paper presents a novel approach to the optimization of a dynamic systems design and control. Traditionally, these problems have been solved either sequentially or in a combined manner. We propose a novel approach that uses a previously derived coupling measure to quantify the impact of plant design variables on optimal control cost. This proposed approach has two key advantages. First, because the coupling term quantifies the gradient of the control optimization objective with respect to plant design variables, the approach ensures combined plant/control optimality. Second, because the coupling term equals the integral of optimal control co-states multiplied by static gradient terms that can be computed a priori, the proposed approach is computationally attractive. We illustrate this approach using an example cantilever beam structural design and vibration control problem. The results show significant computational cost improvements compared to traditional combined plant/control optimization. This reduction in computational cost becomes more pronounced as the number of plant design variables increases.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2024-0702
Total holds: 0

This paper presents a novel approach to the optimization of a dynamic systems design and control. Traditionally, these problems have been solved either sequentially or in a combined manner. We propose a novel approach that uses a previously derived coupling measure to quantify the impact of plant design variables on optimal control cost. This proposed approach has two key advantages. First, because the coupling term quantifies the gradient of the control optimization objective with respect to plant design variables, the approach ensures combined plant/control optimality. Second, because the coupling term equals the integral of optimal control co-states multiplied by static gradient terms that can be computed a priori, the proposed approach is computationally attractive. We illustrate this approach using an example cantilever beam structural design and vibration control problem. The results show significant computational cost improvements compared to traditional combined plant/control optimization. This reduction in computational cost becomes more pronounced as the number of plant design variables increases.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha