Normal view MARC view ISBD view

Parameter screening in statistical dynamic computer model calibration using global sensitivities

By: Drignei, Dorin.
Contributor(s): Mourelatos, Zissimos P.
Publisher: New York ASME 2012Edition: Vol.134(8) Aug.Description: 1-7p.Subject(s): Mechanical EngineeringOnline resources: Click here In: Journal of mechanical designSummary: Computer, or simulation, models are ubiquitous in science and engineering. Two research topics in building computer models, generally treated separately, are sensitivity analysis and computer model calibration. In sensitivity analysis, one quantifies the effect of each input factor on outputs, whereas in calibration, one finds the values of input factors that provide the best match to a set of test data. In this article, we show a connection between these two seemingly separate concepts for problems with transient signals. We use global sensitivity analysis for computer models with transient signals to screen out inactive input factors, thus making the calibration algorithm numerically more stable. We show that the computer model does not vary with respect to parameters having zero total sensitivity indices, indicating that such parameters are impossible to calibrate and must be screened out. Because the computer model can be computationally intensive, we construct a fast statistical surrogate of the computer model which is used for both sensitivity analysis and computer model calibration. We illustrate our approach with both a simple example and an automotive application involving a road load data acquisition (RLDA) computer model.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2024-0706
Total holds: 0

Computer, or simulation, models are ubiquitous in science and engineering. Two research topics in building computer models, generally treated separately, are sensitivity analysis and computer model calibration. In sensitivity analysis, one quantifies the effect of each input factor on outputs, whereas in calibration, one finds the values of input factors that provide the best match to a set of test data. In this article, we show a connection between these two seemingly separate concepts for problems with transient signals. We use global sensitivity analysis for computer models with transient signals to screen out inactive input factors, thus making the calibration algorithm numerically more stable. We show that the computer model does not vary with respect to parameters having zero total sensitivity indices, indicating that such parameters are impossible to calibrate and must be screened out. Because the computer model can be computationally intensive, we construct a fast statistical surrogate of the computer model which is used for both sensitivity analysis and computer model calibration. We illustrate our approach with both a simple example and an automotive application involving a road load data acquisition (RLDA) computer model.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha