Normal view MARC view ISBD view

Using the pareto set pursuing multiobjective optimization approach for hybridization of a plug-in hybrid electric vehicle

By: Shahi, Shashi K.
Contributor(s): Wang, G. Gary.
Publisher: New York ASME 2012Edition: Vol.134(9), Sep.Description: 1-6p.Subject(s): Mechanical EngineeringOnline resources: Click here In: Journal of mechanical designSummary: A plug-in hybrid electric vehicle (PHEV) can improve fuel economy and emission reduction significantly compared to hybrid electric vehicles and conventional internal combustion engine (ICE) vehicles. Currently there lacks an efficient and effective approach to identify the optimal combination of the battery pack size, electric motor, and engine for PHEVs in the presence of multiple design objectives such as fuel economy, operating cost, and emission. This work proposes a design approach for optimal PHEV hybridization. Through integrating the Pareto set pursuing (PSP) multiobjective optimization algorithm and powertrain system analysis toolkit (PSAT) simulator on a Toyota Prius PHEV platform, 4480 possible combinations of design parameters (20 batteries, 14 motors, and 16 engines) were explored for PHEV20 and PHEV40 powertrain configurations.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2024-0731
Total holds: 0

A plug-in hybrid electric vehicle (PHEV) can improve fuel economy and emission reduction significantly compared to hybrid electric vehicles and conventional internal combustion engine (ICE) vehicles. Currently there lacks an efficient and effective approach to identify the optimal combination of the battery pack size, electric motor, and engine for PHEVs in the presence of multiple design objectives such as fuel economy, operating cost, and emission. This work proposes a design approach for optimal PHEV hybridization. Through integrating the Pareto set pursuing (PSP) multiobjective optimization algorithm and powertrain system analysis toolkit (PSAT) simulator on a Toyota Prius PHEV platform, 4480 possible combinations of design parameters (20 batteries, 14 motors, and 16 engines) were explored for PHEV20 and PHEV40 powertrain configurations.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha