Normal view MARC view ISBD view

Sequential quadratic programming for robust optimization with interval uncertainty

By: Zhou, Jianhua.
Contributor(s): Cheng, Shuo.
Publisher: New York ASME 2012Edition: Vol.134(10), Oct.Description: 1-13p.Subject(s): Mechanical EngineeringOnline resources: Click here In: Journal of mechanical designSummary: Uncertainty plays a critical role in engineering design as even a small amount of uncertainty could make an optimal design solution infeasible. The goal of robust optimization is to find a solution that is both optimal and insensitive to uncertainty that may exist in parameters and design variables. In this paper, a novel approach, sequential quadratic programming for robust optimization (SQP-RO), is proposed to solve single-objective continuous nonlinear optimization problems with interval uncertainty in parameters and design variables. This new SQP-RO is developed based on a classic SQP procedure with additional calculations for constraints on objective robustness, feasibility robustness, or both. The obtained solution is locally optimal and robust. Eight numerical and engineering examples with different levels of complexity are utilized to demonstrate the applicability and efficiency of the proposed SQP-RO with the comparison to its deterministic SQP counterpart and RO approaches using genetic algorithms. The objective and/or feasibility robustness are verified via Monte Carlo simulations.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2024-0744
Total holds: 0

Uncertainty plays a critical role in engineering design as even a small amount of uncertainty could make an optimal design solution infeasible. The goal of robust optimization is to find a solution that is both optimal and insensitive to uncertainty that may exist in parameters and design variables. In this paper, a novel approach, sequential quadratic programming for robust optimization (SQP-RO), is proposed to solve single-objective continuous nonlinear optimization problems with interval uncertainty in parameters and design variables. This new SQP-RO is developed based on a classic SQP procedure with additional calculations for constraints on objective robustness, feasibility robustness, or both. The obtained solution is locally optimal and robust. Eight numerical and engineering examples with different levels of complexity are utilized to demonstrate the applicability and efficiency of the proposed SQP-RO with the comparison to its deterministic SQP counterpart and RO approaches using genetic algorithms. The objective and/or feasibility robustness are verified via Monte Carlo simulations.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha