Normal view MARC view ISBD view

Concurrent optimization of computationally learned stylistic form and functional goals

By: Tseng, Ian.
Contributor(s): Cagan, Jonathan.
Publisher: New York ASME 2012Edition: Vol.134(11), Nov.Description: 1-11p.Subject(s): Mechanical EngineeringOnline resources: Click here In: Journal of mechanical designSummary: Great design often results from intelligently balancing tradeoffs and leveraging of synergies between multiple product goals. While the engineering design community has numerous tools for managing the interface between functional goals in products, there are currently no formalized methods to concurrently optimize stylistic form and functional requirements. This research develops a method to coordinate seemingly disparate but highly related goals of stylistic form and functional constraints in computational design. An artificial neural network (ANN) based machine learning system was developed to model surveyed consumer judgments of stylistic form quantitatively. Coupling this quantitative model of stylistic form with a genetic algorithm (GA) enables computers to concurrently account for multiple objectives in the domains of stylistic form and more traditional functional performance evaluation within the same quantitative framework. This coupling then opens the door for computers to automatically generate products that not only work well but also convey desired styles to consumers.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2024-0750
Total holds: 0

Great design often results from intelligently balancing tradeoffs and leveraging of synergies between multiple product goals. While the engineering design community has numerous tools for managing the interface between functional goals in products, there are currently no formalized methods to concurrently optimize stylistic form and functional requirements. This research develops a method to coordinate seemingly disparate but highly related goals of stylistic form and functional constraints in computational design. An artificial neural network (ANN) based machine learning system was developed to model surveyed consumer judgments of stylistic form quantitatively. Coupling this quantitative model of stylistic form with a genetic algorithm (GA) enables computers to concurrently account for multiple objectives in the domains of stylistic form and more traditional functional performance evaluation within the same quantitative framework. This coupling then opens the door for computers to automatically generate products that not only work well but also convey desired styles to consumers.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha