Normal view MARC view ISBD view

Uniformity-based magnetic field and improvement of conversion efficiency for rotary ultrasonic machining applications

By: Yang, Rui.
Contributor(s): Hao, Zhenxing.
Publisher: New Delhi NISCAIR 2024Edition: Vol.62(11), Nov.Description: 961-970p.Subject(s): Humanities and Applied SciencesOnline resources: Click here In: Indian journal of pure & applied physics (IJPAP)Summary: A giant magnetostrictive transducer is a highly integrated device that facilitates the conversion of magnetic energy into mechanical energy, enabling the generation of motion or force during actuation. However, the energy efficiency of giant magnetostrictive materials (GMM) is hindered by several factors, resulting inless-than-optimal performance. To improve energy conversion efficiency, a magnetic circuit control strategy for optimizing the transducer is proposed, focusing on increasing magnetic flux density and enhancing magnetic field uniformity. Theoretical derivations demonstrate the positive correlation between magnetic circuit parameters, flux density, and uniformity. The impact of various magnetic circuit parameters on magnetic field strength is then analyzed using COMSOL software, which identifies optimal parameters for the stacked structure, resulting in a 9% improvement in magnetic field uniformity. Impedance analysis experimentally validates these results. The optimized stacked magnetic circuit for GMM shows a larger impedance circle diameter...
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2025-0360
Total holds: 0

A giant magnetostrictive transducer is a highly integrated device that facilitates the conversion of magnetic energy into mechanical energy, enabling the generation of motion or force during actuation. However, the energy efficiency of giant magnetostrictive materials (GMM) is hindered by several factors, resulting inless-than-optimal performance. To improve energy conversion efficiency, a magnetic circuit control strategy for optimizing the transducer is proposed, focusing on increasing magnetic flux density and enhancing magnetic field uniformity. Theoretical derivations demonstrate the positive correlation between magnetic circuit parameters, flux density, and uniformity. The impact of various magnetic circuit parameters on magnetic field strength is then analyzed using COMSOL software, which identifies optimal parameters for the stacked structure, resulting in a 9% improvement in magnetic field uniformity. Impedance analysis experimentally validates these results. The optimized stacked magnetic circuit for GMM shows a larger impedance circle diameter...

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha