Balap, Aishwarya R.

Study the pharmacokinetic herb-drug interaction of momordica charantiafruit extract and pure charantin with nateglinide in rats - Vol.13(9) - M P Innovare Academic Sciences Pvt Ltd 2021 - 1-5p.

Objective: Momordica charantia fruit extract and antidiabetic drug Nateglinide might be used simultaneously in the treatment of diabetes, so the objective of this study was to investigate pharmacokinetic herb-drug interactions of Momordica charantia fruit extract and pure charantin with nateglinide in rats. Methods: After oral co-administration of Momordica charantia fruit extract (250 mg/kg) and Charantin (10 mg/kg) with nateglinide in rats, drug concentration parameters peak plasma concentration (Cmax), time to reach peak plasma concentration (tmax), elimination half-life (t1/2), apparent volume of distribution (Vd), plasma clearance (Cl), and area under the curve (AUC) were calculated by using the non-compartment model. Results: NAT was absorbed into the circulatory system and reached its peak concentration approximately 2 h after being administered individually. tmax of groups co-administered NAT+MCE has been changed to 4h. A significant decrease in Cmax of NAT from 16.28 μg/ml to 11.37 μg/ml and 10.37 μg/ml with NAT with charantin and NAT with MCE groups, respectively. AUC of NAT decreased from 84.53 h/μg/ml to 53.63 h/μg/ml and 47.17 h/μg/ml by co-administration with Charantin and MCE respectively. Co-administration of nateglinide with Charantin and Momordica charantia fruit extract decreased systemic exposure level of nateglinide in vivo with decreasing Cmax and AUC and an increase in t1/2, Cl and Vd. Conclusion: From this study, it can be concluded that nateglinide, Momordica charantia fruit extract, and pure Charantin existed pharmacokinetic herb-drug interactions in the rat which has to be correlated with the anti-diabetic study. Further studies should be done to understand the effect of other herbal ingredients of Momordica charantia fruit extract on nateglinide as well as to predict the herb-drug interaction in humans.


PHARMACEUTICS