Romero, David A.

Multiresponse metamodeling in simulation-based design applications - Vol.134(9), Sep - New York ASME 2024 - 1-15p.

The optimal design of complex systems in engineering requires the availability of mathematical models of system’s behavior as a function of a set of design variables; such models allow the designer to search for the best solution to the design problem. However, system models (e.g., computational fluid dynamics (CFD) analysis, physical prototypes) are usually time-consuming and expensive to evaluate, and thus unsuited for systematic use during design. Approximate models of system behavior based on limited data, also known as metamodels, allow significant savings by reducing the resources devoted to modeling during the design process. In this work in engineering design based on multiple performance criteria, we propose the use of multi-response Bayesian surrogate models (MR-BSM) to model several aspects of system behavior jointly, instead of modeling each individually. To this end, we formulated a family of multiresponse correlation functions..


Mechanical Engineering