C-Based Design Methodology and Topological Change for an Indian Agricultural Tractor Component
By: Matta, Anil Kumar.
Contributor(s): D, Ranga Raju.
Publisher: Kolkata Springer 2018Edition: Vol,99 (2), June.Description: 193-204p.Subject(s): Civil EngineeringOnline resources: Click Here In: Journal of the institution of engineers (India): Series ASummary: failure of tractor components and their replacement has now become very common in India because of re-cycling, re-sale, and duplication. To over come the problem of failure we propose a design methodology for topological change co-simulating with software’s. In the proposed Design methodology, the designer checks Paxial, Pcr, Pfailue, τ by hand calculations, from which refined topological changes of R.S.Arm are formed. We explained several techniques employed in the component for reduction, removal of rib material to change center of gravity and centroid point by using system C for mixed level simulation and faster topological changes. The design process in system C can be compiled and executed with software, TURBO C7. The modified component is developed in proE and analyzed in ANSYS. The topologically changed component with slot 120 × 4.75 × 32.5 mm at the center showed greater effectiveness than the original component.Item type | Current location | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|
Articles Abstract Database | School of Engineering & Technology Archieval Section | Not for loan | 2021-2021690 |
failure of tractor components and their replacement has now become very common in India because of re-cycling, re-sale, and duplication. To over come the problem of failure we propose a design methodology for topological change co-simulating with software’s. In the proposed Design methodology, the designer checks Paxial, Pcr, Pfailue, τ by hand calculations, from which refined topological changes of R.S.Arm are formed. We explained several techniques employed in the component for reduction, removal of rib material to change center of gravity and centroid point by using system C for mixed level simulation and faster topological changes. The design process in system C can be compiled and executed with software, TURBO C7. The modified component is developed in proE and analyzed in ANSYS. The topologically changed component with slot 120 × 4.75 × 32.5 mm at the center showed greater effectiveness than the original component.
There are no comments for this item.