Normal view MARC view ISBD view

Estimation of lattice strain in Mn-doped ZnO nanoparticles and its effect on structural and optical properties

By: Yadav, Raj Kamal.
Contributor(s): Chauhan, Pratima.
Publisher: New Delhi CSIR 2019Edition: Vol.57(12), Dec.Description: 881-890p.Subject(s): Humanities and Applied ScienceOnline resources: Click here In: Indian journal of pure & applied physics (IJPAP)Summary: In this study, Mn-doped ZnO nanoparticles with compositional formula Zn1-x Mnx O (where, x = 0.00 and 0.10) have been synthesized by simple co-precipitation method. Rietveld refinement of X-ray patterns verifies that the obtained samples have been crystallized in single phase hexagonal wurtzite structure. X-ray peak profile analysis has been used for estimation of crystalline sizes and lattice strain induced by Mn2+ doping with the help of Williamson-Hall (W-H) analysis. The morphology of undoped and Mn-doped samples was examined using transmission electron microscopy (TEM) analysis. The mean particle size from TEM results are consistent with results obtained by the Scherrer’s formula and W-H analysis. From the optical studies, the absorbance spectra show the increment in energy band gap by Mn2+ doping. Photoluminescence (PL) spectra show different emission peaks due to different defect states. This paper heightens the understanding of structural and optical properties of Mn-doped nanoparticles and paves the path for its potential application in modern optoelectronic devices.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2022-0809
Total holds: 0

In this study, Mn-doped ZnO nanoparticles with compositional formula Zn1-x Mnx O (where, x = 0.00 and 0.10) have been synthesized by simple co-precipitation method. Rietveld refinement of X-ray patterns verifies that the obtained samples have been crystallized in single phase hexagonal wurtzite structure. X-ray peak profile analysis has been used for estimation of crystalline sizes and lattice strain induced by Mn2+ doping with the help of Williamson-Hall (W-H) analysis. The morphology of undoped and Mn-doped samples was examined using transmission electron microscopy (TEM) analysis. The mean particle size from TEM results are consistent with results obtained by the Scherrer’s formula and W-H analysis. From the optical studies, the absorbance spectra show the increment in energy band gap by Mn2+ doping. Photoluminescence (PL) spectra show different emission peaks due to different defect states. This paper heightens the understanding of structural and optical properties of Mn-doped nanoparticles and paves the path for its potential application in modern optoelectronic devices.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha