Cloud computing : A hands on approach
By: Bahga, Arshdeep
.
Contributor(s): Madisetti, Vijay
.
Publisher: Hyderabad Universities Press 2014Edition: 1st.Description: 454p. | Binding - Paperback | 24.3*18 cm.ISBN: 9788173719233.Subject(s): Computer Engineering
Item type | Current location | Collection | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|
![]() |
School of Engineering & Technology Reference Section | Reference | 004.6782 BAH/MAD (Browse shelf) | Not For Loan | E14622 | ||
![]() |
School of Engineering & Technology General Stacks | Circulation | 004.6782 BAH/MAD (Browse shelf) | Available | E14623 |
This book is written as a textbook on cloud computing for educational programs at colleges. It uses an immersive "hands-on approach" to transfer knowledge to the reader by providing the necessary guidance and knowledge to develop working code for real-world cloud applications.
It is organised into three main parts. Part I covers technologies that form the foundations of cloud computing. These include topics such as virtualization, load balancing, scalability and elasticity, deployment, and replication. Part II introduces the reader to the design and programming aspects of cloud computing. Case studies on design and implementation of several cloud applications in the areas such as image processing, live streaming and social networks analytics are provided. Part III introduces the reader to specialised aspects of cloud computing including cloud application benchmarking, cloud security, multimedia applications and big data analytics. Case studies in areas such as IT, healthcare, transportation, networking and education are provided.
The book contains hundreds of figures and tested code samples that serve to provide a rigorous, "no hype" guide to cloud computing. Review questions and exercises are provided at the end of each chapter. The focus of the book is on getting the reader firmly on track to developing robust cloud applications on their own. Thus, readers can use the exercises to develop their own applications on cloud platforms, such as those from Amazon Web Services, Google Cloud, and Microsoft's Windows Azure.
Additional support is available at the book's website: www.cloudcomputingbook.info
The book can also be used by cloud service providers (companies) for their customer and employee training programs.
Table of Contents
Part I Introduction and Concepts
1 Introduction to Cloud Computing
1.1 Introduction
1.1.1 Definition of Cloud Computing
1.2 Characteristics of Cloud Computing
1.3 Cloud Models
1.3.1 Service Models
1.3.2 Deployment Models
1.4 Cloud Services Examples
1.4.1 IaaS: Amazon EC2, Google Compute Engine, Azure VMs
1.4.2 PaaS: Google App Engine
1.4.3 SaaS: Salesforce
1.5 Cloud-based Services & Applications
1.5.1 Cloud Computing for Healthcare
1.5.2 Cloud Computing for Energy Systems
1.5.3 Cloud Computing for Transportation Systems
1.5.4 Cloud Computing for Manufacturing Industry
1.5.5 Cloud Computing for Government
1.5.6 Cloud Computing for Education
1.5.7 Cloud Computing for Mobile Communication
2 Cloud Concepts & Technologies
2.1 Virtualization
2.2 Load Balancing
2.3 Scalability & Elasticity
2.4 Deployment
2.5 Replication
2.6 Monitoring
2.7 Software Defined Networking
2.8 Network Function Virtualization
2.9 MapReduce
2.10 Identity and Access Management
2.11 Service Level Agreements
2.12 Billing
3 Cloud Services & Platforms
3.1 Compute Services
3.1.1 Amazon Elastic Compute Cloud
3.1.2 Google Compute Engine
3.1.3 Windows Azure Virtual Machines
3.2 Storage Services
3.2.1 Amazon Simple Storage Service
3.2.2 Google Cloud Storage
3.2.3 Windows Azure Storage
3.3 Database Services
3.3.1 Amazon Relational Data Store
3.3.2 Amazon DynamoDB
3.3.3 Google Cloud SQL
3.3.4 Google Cloud Datastore
3.3.5 Windows Azure SQL Database
3.3.6 Windows Azure Table Service
3.4 Application Services
3.4.1 Application Runtimes & Frameworks
3.4.2 Queuing Services
3.4.3 Email Services
3.4.4 Notification Services
3.4.5 Media Services
3.5 Content Delivery Services
3.5.1 Amazon CloudFront
3.5.2 Windows Azure Content Delivery Network
3.6 Analytics Services
3.6.1 Amazon Elastic MapReduce
3.6.2 Google MapReduce Service
3.6.3 Google BigQuery
3.6.4 Windows Azure HDInsight
3.7 Deployment & Management Services
3.7.1 Amazon Elastic Beanstalk
3.7.2 Amazon CloudFormation
3.8 Identity & Access Management Services
3.8.1 Amazon Identity & Access Management
3.8.2 Windows Azure Active Directory
3.9 Open Source Private Cloud Software
3.9.1 CloudStack
3.9.2 Eucalyptus
3.9.3 OpenStack
4 Hadoop & MapReduce
4.1 Apache Hadoop
4.2 Hadoop MapReduce Job Execution
4.2.1 NameNode
4.2.2 Secondary NameNode
4.2.3 JobTracker
4.2.4 TaskTracker
4.2.5 DataNode
4.2.6 MapReduce Job Execution Workflow
4.3 Hadoop Schedulers
4.3.1 FIFO
4.3.2 Fair Scheduler
4.3.3 Capacity Scheduler
4.4 Hadoop Cluster Setup
4.4.1 Install Java
4.4.2 Install Hadoop
4.4.3 Networking
4.4.4 Configure Hadoop
4.4.5 Starting and Stopping Hadoop Cluster
Part II Developing for Cloud
5 Cloud Application Design
5.1 Introduction
5.2 Design Considerations for Cloud Applications
5.2.1 Scalability
5.2.2 Reliability & Availability
5.2.3 Security
5.2.4 Maintenance & Upgradation
5.2.5 Performance
5.3 Reference Architectures for Cloud Applications
5.4 Cloud Application Design Methodologies
5.4.1 Service Oriented Architecture
5.4.2 Cloud Component Model
5.4.3 IaaS, PaaS and SaaS Services for Cloud Applications
5.4.4 Model View Controller
5.4.5 RESTful Web Services
5.5 Data Storage Approaches
5.5.1 Relational (SQL) Approach
5.5.2 Non-Relational (No-SQL) Approach
6 Python Basics
6.1 Introduction
6.2 Installing Python
6.3 Python Data Types & Data Structures
6.3.1 Numbers
6.3.2 Strings
6.3.3 Lists
6.3.4 Tuples
6.3.5 Dictionaries
6.3.6 Type Conversions
6.4 Control Flow
6.4.1 if
6.4.2 for
6.4.3 while
6.4.4 range
6.4.5 break/continue
6.4.6 pass
6.5 Functions
6.6 Modules
6.7 Packages
6.8 File Handling
6.9 Date/Time Operations
6.10 Classes
7 Python for Cloud
7.1 Python for Amazon Web Services
7.1.1 Amazon EC2
7.1.2 Amazon AutoScaling
7.1.3 Amazon S3
7.1.4 Amazon RDS
7.1.5 Amazon DynamoDB
7.1.6 Amazon SQS
7.1.7 Amazon EMR
7.2 Python for Google Cloud Platform
7.2.1 Google Compute Engine
7.2.2 Google Cloud Storage
7.2.3 Google Cloud SQL
7.2.4 Google BigQuery
7.2.5 Google Cloud Datastore
7.2.6 Google App Engine
7.3 Python for Windows Azure
7.3.1 Azure Cloud Service
7.3.2 Azure Virtual Machines
7.3.3 Azure Storage
7.4 Python for MapReduce
7.5 Python Packages of Interest
7.5.1 JSON
7.5.2 XML
7.5.3 HTTPLib & URLLib
7.5.4 SMTPLib
7.5.5 NumPy
7.5.6 Scikit-learn
7.6 Python Web Application Framework - Django
7.6.1 Django Architecture
7.6.2 Starting Development with Django
7.6.3 Django Case Study - Blogging App
7.7 Designing a RESTful Web API
8 Cloud Application Development in Python
8.1 Design Approaches
8.1.1 Design Methodology for IaaS Service Model
8.1.2 Design Methodology for PaaS Service Model
8.2 Image Processing App
8.3 Document Storage App
8.4 MapReduce App
8.5 Social Media Analytics App
Part III Advanced Topics
9 Big Data Analytics
9.1 Introduction
9.2 Clustering Big Data
9.2.1 k-Means Clustering
9.2.2 DBSCAN Clustering
9.2.3 Parallelizing Clustering Algorithms Using MapReduce
9.3 Classification of Big Data
9.3.1 Naive Bayes
9.3.2 Decision Trees
9.3.3 Random Forest
9.3.4 Support Vector Machine
9.4 Recommendation Systems
10 Multimedia Cloud
10.1 Introduction
10.2 Case Study: Live Video Streaming App
10.3 Streaming Protocols
10.3.1 RTMP Streaming
10.3.2 HTTP Live Streaming
10.3.3 HTTP Dynamic Streaming
10.4 Case Study: Video Transcoding App
11 Cloud Application Benchmarking & Tuning
11.1 Introduction
11.1.1 Trace Collection/Generation
11.1.2 Workload Modeling
11.1.3 Workload Specification
11.1.4 Synthetic Workload Generation
11.1.5 User Emulation vs. Aggregate Workloads
11.2 Workload Characteristics
11.3 Application Performance Metrics
11.4 Design Considerations for a Benchmarking Methodology
11.5 Benchmarking Tools
11.5.1 Types of Tests
11.6 Deployment Prototyping
11.7 Load Testing & Bottleneck Detection Case Study
11.8 Hadoop Benchmarking Case Study
12 Cloud Security
12.1 Introduction
12.2 CSA Cloud Security Architecture
12.3 Authentication
12.3.1 Single Sign-on (SSO)
12.4 Authorization
12.5 Identity & Access Management
12.6 Data Security
12.6.1 Securing Data at Rest
12.6.2 Securing Data in Motion
12.7 Key Management
12.8 Auditing
13 Cloud for Industry, Healthcare & Education
13.1 Cloud Computing for Healthcare
13.2 Cloud Computing for Energy Systems
13.3 Cloud Computing for Transportation Systems
13.4 Cloud Computing for Manufacturing Industry
13.5 Cloud Computing for Education
Appendix-A: Setting up Ubuntu VM
Appendix-B: Setting up Django
Bibliography
Index
There are no comments for this item.